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Meshless method is a type of promising numerical approach. But for the method, the convergence is still lack of common theoret-
ical explanations, and the technique of numerical implementation also remains to be improved. It is worth noting that a kind of 
uniformly defined intervention point is used in many existing schemes. Therefore, the intervention-point principle is proposed. 
The viewpoint is likely to give a reasonable explanation for the inaccuracy and instability of the collocation method. Based on the 
principle, a design process for a new scheme was demonstrated. Some initial numerical tests were also offered. The results have 
revealed the intervention point to take effect on convergence, suggested a construction concept using intervention point for mesh-
less collocation method, and presented a new scheme of meshless method for application. 
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Nowadays, mechanics must fully take advantage of modern 
computational technology, to solve any macroscopic and 
practical problems of science and technology, and computa-
tional method is very important [1]. Some conventional 
computational methods have been widely applied to solve 
practical and complicated problems, such as finite element 
method (FEM), finite difference method (FDM) and bound-
ary element method (BEM). These methods are all based on 
meshes. Meshless method is a unique computational method, 
which gives solution using a set of arbitrarily distributed 
nodes. This kind of properties breaking away from meshes 
can bring some benefits for the method. One is of great 
convenience to execute, for setting up nodes is much easier 
than constructing meshes. Another is the flexibility for ap-
plication. The method can effectively eliminate the connat-
ural drawbacks of using meshes, and is suitable for handling 
some challenging problems, such as large deformation 
problem, structure decomposition problem, adaptive analy-
sis problem, fluid dynamics problem, and explosion and 
impact problem. Moreover, for some objects difficult to 
describe by meshes, meshless method also has advantages, 
such as simulating galaxies on cosmic scale in celestial 

mechanics, portraying polyatomic crystals in microphysics, 
imitating cells or molecules in biomechanics. Therefore, 
meshless method with its ingenious tactics and great prom-
ise has become the most active research subject in recent 
decades [2–5]. 

In China, the research into meshless methods has also 
become very lively. Some impressive contributions have 
been reported and applied, such as the development on the 
radial basis functions (RBF) by Wu [6], the least square 
collocation meshless method (LSC) by Zhang et al. [7], the 
hybrid boundary node method (HBNM) by Zhang et al. [8], 
the boundary knot method (BKM) and the singular bounda-
ry method (SBM) by Chen et al. [9,10], the complex varia-
ble moving least-square approximation method (CVMLS) 
by Cheng et al. [11], the application research on MLPG 
method by Long et al. [12], the Galerkin boundary node 
method (GBN) by Li et al. [13], and so on. 

However, the time has not come for cheering. For a 
powerful meshless method, many obstacles still remain to 
be solved. We have not developed a uniform theoretical 
perspective on convergence of the method, or to guarantee 
accuracy and stability. At present, dozens of schemes for 
the method have been proposed, and new ones are still 
emerging. For those successful schemes, we believe that 
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their success must have the essence of a general consistency. 
If we stay on the comparison and differentiation for specific 
methods, we will only see the complicated phenomenon. 
That is not helpful for us to discover the uniform theory for 
the method and to develop more competitive schemes. 

1  What is the intervention point? 

Based on the derivation rule of system equations, or dis-
cretization method, we can roughly classify meshless 
methods into some basic types, shown in Table 1 [2–4]. 

The collocation method is initially used in the early study 
of meshless method [14,15], and typically uses only field 
nodes to build discrete system equations. The method is 
very simple and direct, and perfectly fit for the spirit of 
scattered nodes discretization of meshless method. Unfor-
tunately, the method is usually instable and inaccurate for 
solving. Therefore, the method had been somewhat re-
stricted in its application. 

The least square method is a kind of discretization ap-
proach based on least square weighted residuals method. 
The method usually uses a kind of “auxiliary point” to build 
system equations [7]. Compared to the collocation method, 
solving by the least square method is obvious improvement 
in stability and accuracy. 

All the weak form methods, III, IV and V in Table 1, 
need a kind of shadow mesh, although this shadow mesh 
may be global, local or border. In addition, these methods 
need to rely on “integral point” to evaluate integrals. The 
weak form methods really have advantages of excellent 
stability and satisfactory accuracy, and bring prosperity for 
the research of meshless method [16–18]. 

Moreover, a special collocation method has not escaped 
our attention. It is the double grid diffuse collocation meth-
od (DGDC) [19]. In the method, a kind of so-called “evalu-
ation point” was used. For the performance of the method, 

the authors stated that “exhibit good convergence proper-
ties”. 

Following upper remarks, it is not difficult to find a very 
interesting phenomenon: meshless method using some spe-
cial “point”, which is different from field node, have vary-
ing degrees of improvements in accuracy and stability. Yet 
this kind of point is the absence for ordinary collocation 
method. For the point, we can give a uniform definition: 
when we build the discrete equations for meshless method, 
a kind of point may be used, which is different from field 
node or not for domain discretization; then we define it as 
the “intervention point”. 

2  Intervention-point principle  

First, we will put forward a proposition: intervention point 
is an important condition to ensure convergence for mesh-
less method. We name this proposition as the interven-
tion-point principle. In particular, we will discuss the prop-
osition on the precondition of using moving least square 
(MLS) approximation method in this paper. Then our topic 
will be locked in the subject of discretization method, so as 
to avoid interference of approximation method. If we scru-
tinize the effectiveness of the intervention point in meshless 
method, its functionality can be summarized into three main 
aspects. 

(1) Increasing accuracy and consistency of approxima-
tion. This is a universal and essential functionality of the 
intervention point. Meshless method is based on the 
weighted residual method. For a random target node xI, 
when its field variable uI(x) is approximated by an approx-
imation function ( )Iu x , the residual will be produced, 

which is denoted as ( ) 0.IR u  Obviously, 

 ( ) ( )( ) ( ) ,  d d
I Iu u x x  ( )

0
( ) 0.lim


d

IR u  (1) 

Table 1  A subtotal of meshless methods 

Discretization methods Specific schemes 

I Collocation method Smooth particle hydrodynamics method (SPH), free mesh difference method (FMD), vortex method, finite point 
method (FPM), hp-cloud method, double grid diffuse collocation method (DGDC) 

II Least square method Least square collocation method (LSC), meshless weighted least square method (MWLS), least-squares radial point 
collocation method (LS-RPCM) 

III Galerkin method Diffuse element method (DEM), element free Galerkin method (EFG), reproducing kernel particle method (RKPM), 
partition of unity finite element methods (PUM), meshfree point interpolation method (MPIM), meshfree radial-basis 
point interpolation method (MRPIM) 

IV Petrov-Galerkin method The meshless local Petrov-Galerkin method (MLPG), local point interpolation method (LPIM), local radial-basis 
point interpolation method (LRPIM) 

V Boundary method Boundary node method (BNM), boundary particle method (BPM), local boundary integral equation method (LBIE), 
hybrid boundary node method (HBNM), boundary knot method (BKM), boundary cloud method (BCM), boundary 
point interpolation method (BPIM), boundary radial-basis point interpolation method (BRPIM), singular boundary 
method (SBM), Galerkin boundary node method (GBN) 

VI Combinatorial method Meshfree weak-strong form method (MWS), meshless Galerkin least square method (MGLS), hybrid mesh-free finite 
volume difference method (HMFVDM) 
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It is explained that the convergence of meshless method 
depends on the accuracy of approximation. In addition, ap-
proximation is different from interpolation, and we should 
not only pay attention to the approximation accuracy of the 
target node, but also think about the accuracy of information 
collection from other field nodes (supported nodes). This is 
the requirement of approximation consistency for the nu-
merical method. We should realize that a direct approxima-
tion approach (Figure 1(a)) is a deliberately balanced but 
not complete strategy. This kind of approximation strategy 
is used in ordinary collocation method, and practice shows 
that the strategy is not effective enough. An improved 
scheme is an indirect approximation strategy (Figure 1(b)), 
in which, target node gets field information from interven-
tion point, but not from field node directly. All the weak 
form methods have used this strategy, although field infor-
mation transfer from intervention point to target node may 
be not by approximation (so we used a dashed line to denote 
this kind of difference in the figure). Yet, intervention point 
participating in approximation is a certainty. Also note that 
DGDC has used the indirect approximation strategy, and the 
process from intervention point to target node is an ap-
proximation relation. Another improved scheme is a com-
pound approximation strategy (Figure 1(c)). Same, inter-
vention point also joins approximation, but the field infor-
mation of intervention point will be attached to target node, 
and a special solving technique is needed. The least square 
method has used the strategy. Indeed, for a certain method, 
intervention point is not only for approximation. But the 
contribution for intervention point to increase approxima-
tion accuracy and consistency is worthy of recognition. 

(2) Constructing discretization method. For some dis-
cretization methods, intervention point is essential. For ex-
ample, weak form methods need integral point, and least 
square method maybe need auxiliary point. These discreti-
zation methods created intervention point, say it in another 
way, it is the intervention point to support those discretiza-
tion methods. Actually, some discretization method with 
good convergence could also be given a reasonable expla-
nation in the approximation sense. For example, all the 
weak form methods from III, IV and V categories in Table 1, 
can avoid executing a higher order derivative approximation 
according to the governing equation. That is very helpful for  
 

 

Figure 1  Schematics of approximation strategy in meshless method. (a) 
Direct approximation (node to node); (b) indirect approximation (node to 
intervention point to node); (c) compound approximation (node to node, 
plus node to intervention point). 

the methods showing fast convergence. 
(3) Strengthening stability. For meshless method, stabil-

ity can be expressed by two aspects: numerical solution is 
insensitive for arbitrary field variable, and for relatively 
arbitrary field nodes distribution. This is essentially a per-
formance of approximation stability. We can get some 
messages from existing methods: appropriate density of 
intervention points is helpful for stability. For example, both 
of EFG and MLPG have shown better stability. We should 
notice that integral points are densely used in the methods. 
But their stability could not be ensured, when we choice 
less integral points. 

These introductions are essentially a general description 
of the effect on convergence for intervention point. In fact, 
for a specific method, intervention point not only plays a 
certain function, more likely, plays a combination of multi-
ple functions. The intervention-point principle may give a 
simple and uniform construction concept for meshless 
method: intervention point is needed beyond field node. 
Except for the collocation method, intervention point is in-
deed necessary for other discretization methods. But for the 
collocation method, this may be a breakthrough viewpoint, 
and may also be a controversial one. 

The principle also hints at a possibility: we could set up a 
uniform convergence theory based on intervention point for 
meshless method. This kind of theoretical support is surely 
needed for the method. All the discretization schemes of 
meshless method are based on the weighted residual method, 
and the residuals come from approximation. Research has 
shown that all weighted residual methods are uniformly 
convergent [20]. But it is undeniable that different discreti-
zation method probably gives a different performance for 
solving. Even for those methods similarly based on the col-
location method, using intervention point or not, will show 
very different results. These give us an important revelation: 
for meshless method, the uniform convergence of the 
weighted residual method is conditional, and intervention 
point is an important role. 

The principle is also helpful to break some stereotypes. 
On the road of collocation method, a “stop” sign has proba-
bly been set up. Judging with experience, the collocation 
method is really underwhelmed by its performance. How-
ever, explained by the intervention-point principle, the 
weakness of the collocation method is not natural but short 
of intervention point. Indeed, we cannot hope the method to 
make bricks without straw. Based on the principle, some 
new collocation methods will possibly be developed. Next, 
we will demonstrate a scheme design process, which can 
also be taken as a support and annotate for the intervention- 
point principle. 

3  A scheme design example 

According to the intervention-point principle, meshless 



 Yang J J, et al.   Chin Sci Bull   February (2013) Vol.58 No.4-5 481 

method need intervention point, and intervention point 
should serve approximation. Following this train of thought, 
we will design a new scheme based on collocation discreti-
zation method. We name this scheme as the meshless inter-
vention point method (MIP). 

For meshless method, to construct meshless approxima-
tion is a primary task. MLS is generally considered to be 
one of the best schemes with a reasonable accuracy [16–18]. 
So we will choose MLS [21] for approximation function in 
MIP, and its functional image is shown in Figure 2. It is 
well known that the accuracy of the approximation is very 
important for the performance of a meshless method. How-
ever, we cannot place our whole hope on the approximation 
function to execute satisfactory approximation uncondition-
ally; it is a hard mission to complete for the function in most 
cases. In our concept of scheme design, we need to create 
conditions for accurate and stable approximation, especially 
for derivative approximation. The intervention point can sup-
ply favorable conditions to attain the target. 

The approximation function not only carries out ap-
proximation of field information, but also takes a role of 
field information transmitter. In approximation process, a 
reasonable small size of supported domain, namely locality, 
is the base of approximation accuracy for the calculation 
point (target point). Only if the supported domain is small 
enough, a random local field function cut off by it can be a 
simple one; the approximation function with limited ability 
can probably give an accurate approximation. In field in-
formation transmitting process, a reasonable big size of 
supported domain, namely coverability, is the base of ef-
fectual transmitting. Only if the supported domain is big 
enough, more supported points (field node) will take part in 
the action of field information transmitting, the link relation 
between the calculation point and the supported points can 
be stable. This need of locality and coverability is a contrary 
request of both big and small for the supported domain size. 
That is so called “supported domain paradox”. Using inter-
vention point, we can get off the hooks. Next, we will elab-
orate our designing ideas for MIP. 

(1) Locking the scale of local domain. By the mediation  
 

 

Figure 2  MLS approximation function. 

of intervention point, we can separate a supported domain 
S into two domains with different functions (Figure 3), the 
small one L named as the local domain is in charge of 
accurate approximation, and the big one C named as the 
cover domain is in charge of information transmitting. Thus, 
the size of local domain can be defined freely and restricted 
effectually. The approximation function is usually needed to 
implement derivative approximation, and derivative opera-
tor can enlarge the approximation errors. Since approxima-
tion on the local domain is more reasonable, then derivative 
approximation on the local domain is certainly more accu-
rate. So we should put the derivative approximation process 
on the local domain usually.  

(2) Creating conditions for higher degree basis. This is 
closely related with the effect of intervention point to lock 
the scale of local domain. MLS approximation usually uses 
a polynomial basis to construct the trial/approximation 
function, only if the degree of basis is high enough, ap-
proximation capacity of the trial function can be powerful 
enough, and therefore approximation can be accurate 
enough. If no intervention point participates in, for a given 
field nodes distribution scheme, a higher degree basis 
means more terms produced, which need more field nodes 
to play as supported points, then the size of supported do-
main will be expanded accordingly, and the potential field 
function on a bigger domain will be more complicated. In 
other words, when we upgrade the trial function, the ap-
proximation target will grow to be more complicated. For 
approximation accuracy, the trial function just like a ham-
ster in a rotating cage, no matter how it try its best to run, 
the delicious cookie is always far from touch. Therefore, in 
order to avoid the approximation accuracy out of control, 
2-degree basis is usually used. But, the lower degree of ba-
sis may be not enough, especially for derivative approxima-
tion. When intervention point is used, local domain can be 
locked, and intervention point can be used more freely, and 
higher degree basis can be used more flexibly on local do-
main. Thus, the accuracy of derivative approximation can 
be guaranteed for the target node xI. 

(3) Ensuring the consistency of approximation. For the  
 

 

Figure 3  Supported domain separating by intervention point. (a) The 
simple supported domain S, field node xJ is a support for target node xI; 
this kind of logical link of approximation is a simple chain structure. (b) 
Here xP is the intervention point, former S is separated out of two do-
mains, local domain L and cover domain C; for approximation, xP is a 
support for xI, and xJ is a support for xP; the logical link between xI and xJ 
is turned into a hinge type structure. 
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accurate solution of meshless method, only an accurate ap-
proximation for the target node xI is not enough. We should 
also ensure the accuracy of field information collection 
from the supported node xJ. We call this kind of require-
ment the consistency of approximation. It would be like two 
horses drawing a wagon together; faster one with slow one 
will not be fast. Using the intervention point xP, we could 
let xP close to or even get to xJ, and then we could capture 
accurate filed information from xJ. Therefore, the con-
sistency of approximation could be ensured. Also, we 
should realize that a smaller scale L is favorable for xI, but 
may be unfavorable for xJ. Hence, we should reasonably set 
the local domain size taking care of each other concerns. 

Based on these approximation tactics using intervention 
point, MIP’s basic approximation formulas are written as 

    
1

ˆ


  pN

I p pp
u u x x  on L ,  (2) 

    
1

ˆ ˆ


   JN

p p J JJ
u u u x x  on C ,  (3) 

where    ˆ
  u u ux x ,   x  denotes the MLS shape 

function corresponding to the point x , Np, NJ denote the 

number of intervention points xP in L and field nodes xJ in 
C, respectively. We can eliminate ˆ

p
u  by substituting eq. 

(3) into eq. (2), and obtain  

      
1 1

ˆ . 
 

  p JN N

I p J Jp J
u u x x x    (4) 

Commonly, its d-th order derivative approximation formula 
can be written as 

      ( ) ( )

1 1
ˆ . 

 
  p JN Nd d

I p J Jp J
u u x x x    (5) 

In order to demonstrate the numerical implementation for 
MIP method, we consider a linear Poisson’s equation in a 
global domain  bounded by . The problem is defined as 
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Figure 4  Schematics of meshless intervention point method (MIP). 

where u(x) is the field function, f(x) is the given distributing 
function (body load) on the problem domain, ( )u x  is the 

known displacement function on the essential boundary u, 
( )t x  is the given load function on the natural boundary t, 

and n is the outer normal vector of t. The domain discreti-
zation of MIP method is shown in Figure 4. The problem’s 
numerical system equation can be written as 

 , K U F   (7) 

where K is the global stiffness matrix, U is the global dis-
placement vector which need to be solved, and F is the 
global load vector. Then, the MIP discrete equations for an 
arbitrary calculation node xI are given as 
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where ,( ) ii  denotes 2 2( ) /  i , and i is a dimensional 

component of x, and ,( ) n  denotes ( ) / n  . It might also 

be noted that the approximation tactic of MIP is focused on 
struggling with the challenge of derivative approximation. 
Therefore, the approach is not strictly necessary for dealing 
with the essential boundary condition. In most of the cases, 
we can use the common collocation method for I ux  to 

simplify the calculation, which is defined as 

  
1

, . 


  JN

IJ J I uJ
K x x  (10) 

Since intervention points in L are used locally and 
temporarily, we can use a standard mould creating the L 
with intervention points for a target node xI. Furthermore, 
the intervention-point mould can be designed specially to 
achieve the balance of accuracy and efficiency. 

4  Numerical examples 

4.1  An infinite plate with a circular hole problem 

Firstly, we consider a classic example, the infinite plate 
with a circular hole [17], which is forced a tensile load 
( xq  =1) in x direction. Due to symmetry, only the upper 

right quadrant of the plate with finite structure is modeled, 
shown in Figure 5(a). We solved the problem with materials 
parameters of E=103 and  =0.3. For the problem, the nu-
merical solutions are shown in Figure 5(b)–(d). It can be 
seen that the present method can give satisfactory solution  



 Yang J J, et al.   Chin Sci Bull   February (2013) Vol.58 No.4-5 483 

 

Figure 5  The infinite plate with a circular hole problem. (a) The discrete model of the problem; (b) the distribution of x-direction stress around the hole; (c) 
comparison of numerical solutions and exact solutions for x-direction stress at x=0; (d) the relative errors for numerical solution. 

and shows good convergence for the problem. 

4.2  A transistor heat conduction problem 

MIP can also be easily applied to heat conduction problem. 
Consider a transistor steady-state heat conduction problem, 
shown in Figure 6(a). The inner (MESHLESS) and outer 
boundaries are both given temperature conditions. We solve 
the problem with H=4, L=25, inner boundary condition 
t0=42, and outer boundary condition T0=95. We get the nu-
merical solution of the problem with the isothermal chart 
distribution in the medium of the transistor, which is shown 
in Figure 6(b). With the problem, we can also test the pre-
sent method which can be easily applied to the problems 
with complicated geometric boundary. 

4.3  An atomic chain forced vibration problem 

Meshless method can easily cope with some particle struc-
ture problems. Consider a liner atomic chain system build-
ing by N=101 atoms, which is fixed at one end, and forced 
by impact load at another, as shown in Figure 7(a) and (b). 
We solve the problem with atoms space d=0.1, then L=100d,  

 
Figure 6  The transistor heat conduction problem. (a) Geometric model of 
the problem; (b) isothermal chart in medium of the transistor. 

elastic constant of atomic bonding force E=104, the mass of 
an atom m=L/N (unit). We used the Newmark method to 
solve the dynamical problem, and took time step as t=5 
105, and then we can get the solution as shown in Figure 
7(c) and (d). It can be seen that the present method can also  
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Figure 7  The atomic chain forced vibration problem. (a) The mechanical model; (b) force diagram of outer dynamic load; (c) the displacement wave of the 
mid atom; (d) the stress wave of the mid atom. 

give a satisfactory solution for the problem.  

5  Conclusions and outlook 

In traditional concepts, there is no special position for in-
tervention point in meshless method. But in practice, we 
have used it in many special schemes casually. The colloca-
tion method without intervention point possibly remained a 
fatal flaw, and this may be the reason for the discretization 
method making slow progress. The present intervention- 
point principle may be to inject new vitality into collocation 
method, and support meshless method on a way of simplic-
ity and flexibility. The principle also gives an optional view 
for meshless method to construct a uniform convergence 
theory, this kind of theoretical support is necessary for a 
mature and powerful meshless method. It is still questiona-
ble for the principle applied to some other approximation 
methods besides MLS. Overall, we are cautiously optimistic 
about that. In essence, the principle is proposed as a new 
opinion, though it is crude and nascent, it could be helpful 
to inspire the research. 

In order to test and explain the principle, we have pro-
posed a new scheme, the meshless intervention point meth-
od (MIP). We feel that MIP has some potential advantages. 
MIP is a simple pure meshless method, also with satisfac-
tory accuracy, stability and flexibility. Observant readers 
may have noticed that the discretization mode of MIP is 
somewhat similar to that of MLPG. It indicates that reason-
able methods are similar in essence. This kind of similarity 
can be explained successfully by the intervention-point 
principle, but cannot by the particular discretization method. 
Inspired by this, EFG is also a successful scheme, can we 
use the principle to eliminate the shadow meshes of the 
method, and convert it into a kind of promising collocation 

method? Using the principle, can we improve some existing 
methods? Can we develop some new valuable methods? 
Anything is possible, as long as our mankind stay thinking. 
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