102 research outputs found

    Channel Spectral Separation Narrowing for Spectral Beam Combining by Apodisation of the Reflecting Volume Bragg Grating

    Get PDF
    The sidelobe in diffraction efficiency of reflecting volume Bragg grating (RVBG) limits the wavelength channel spectral separation, which determines the combining power output in spectral beam combining (SBC) systems. A novel SBC system based on the apodised RVBG has been proposed to suppress the sidelobe. Several apodised RVBGs have been compared and the optimal apodised RVBG is obtained by using the chain-matrix approach. Numerical results show that the sidelobe could be suppressed excellently with Blackman apodised RVBG. In the numerical example, the minimal channel spectral separation was 1.0 nm for SBC system based on the RVBG and it decreased to 0.6 nm for the novel SBC system based on the Blackman apodised RVBG when the spectral combining efficiency of both systems achieves the same maximum value.Defence Science Journal, 2011, 61(3), pp.201-205, DOI:http://dx.doi.org/10.14429/dsj.61.52

    Lattice study on kaon pion scattering length in the I=3/2I=3/2 channel

    Get PDF
    Using the tadpole improved Wilson quark action on small, coarse and anisotropic lattices, KπK\pi scattering length in the I=3/2I=3/2 channel is calculated within quenched approximation. The results are extrapolated towards the chiral and physical kaon mass region. Finite volume and finite lattice spacing errors are also analyzed and a result in the infinite volume and continuum limit is obtained. Our result is compared with the results obtained using Roy equations, Chiral Perturbation Theory, dispersion relations and the experimental data.Comment: Latex file typeset with elsart.cls, 9 pages, 3 figure

    QTLs and candidate genes analyses for fruit size under domestication and differentiation in melon (Cucumis melo L.) based on high resolution maps

    Get PDF
    Background: Melon is a very important horticultural crop produced worldwide with high phenotypic diversity. Fruit size is among the most important domestication and differentiation traits in melon. The molecular mechanisms of fruit size in melon are largely unknown. Results: Two high-density genetic maps were constructed by whole-genome resequencing with two F2 segregating populations (WAP and MAP) derived from two crosses (cultivated agrestis × wild agrestis and cultivated melo × cultivated agrestis). We obtained 1,871,671 and 1,976,589 high quality SNPs that show differences between parents in WAP and MAP. A total of 5138 and 5839 recombination events generated 954 bins in WAP and 1027 bins in MAP with the average size of 321.3 Kb and 301.4 Kb respectively. All bins were mapped onto 12 linkage groups in WAP and MAP. The total lengths of two linkage maps were 904.4 cM (WAP) and 874.5 cM (MAP), covering 86.6% and 87.4% of the melon genome. Two loci for fruit size were identified on chromosome 11 in WAP and chromosome 5 in MAP, respectively. An auxin response factor and a YABBY transcription factor were inferred to be the candidate genes for both loci. Conclusion: The high-resolution genetic maps and QTLs analyses for fruit size described here will provide a better understanding the genetic basis of domestication and differentiation, and provide a valuable tool for map-based cloning and molecular marker assisted breeding.info:eu-repo/semantics/publishedVersio

    Full-space Cloud of Random Points with a Scrambling Metasurface

    Get PDF
    With the rapid progress in computer science, including artificial intelligence, big data and cloud computing, full-space spot generation can be pivotal to many practical applications, such as facial recognition, motion detection, augmented reality, etc. These opportunities may be achieved by using diffractive optical elements (DOEs) or light detection and ranging (LIDAR). However, DOEs suffer from intrinsic limitations, such as demanding depth-controlled fabrication techniques, large thicknesses (more than the wavelength), Lambertian operation only in half space, etc. LIDAR nevertheless relies on complex and bulky scanning systems, which hinders the miniaturization of the spot generator. Here, inspired by a Lambertian scatterer, we report a Hermitian-conjugate metasurface scrambling the incident light to a cloud of random points in full space with compressed information density, functioning in both transmission and reflection spaces. Over 4044 random spots are experimentally observed in the entire space, covering angles at nearly 90 degrees. Our scrambling metasurface is made of amorphous silicon with a uniform subwavelength height, a nearly continuous phase coverage, a lightweight, flexible design, and low-heat dissipation. Thus, it may be mass produced by and integrated into existing semiconductor foundry designs. Our work opens important directions for emerging 3D recognition sensors, such as motion sensing, facial recognition, and other applications.113Nsciescopu

    Changes on the conformational and functional properties of soybean protein isolate induced by quercetin

    Get PDF
    The conformational changes and functional properties of SPI induced by quercetin was investigated via fourier transform infrared (FTIR) spectroscopy, fluorescence spectroscopy, circular dichroism (CD) spectroscopy and molecular docking. A decrease in the fluorescence intensity and a blue shift in the maximum wavelength were observed due to the binding process with fluorescent residues. The analysis of Stern-Volmer equation showed that the fluorescence quenching induced by quercetin took the form of static quenching, and the binding stoichiometry between SPI and quercetin was 1:1. The values of ΔH and ΔS were both positive illustrating that hydrophobic interaction was the primary binding force between quercetin and SPI. Results of FTIR and CD indicated that the binding with quercetin changed the secondary structure of SPI, resulting in a partially unfolded and more flexible structure. SDS-PAGE confirmed there was no covalent interaction between the two constituents. Molecular docking demonstrated that there were stable configurations and high matching degrees in both 11S and 7S proteins with quercetin via hydrogen bonds and hydrophobic interactions. Meanwhile, modification by quercetin enhanced the foaming and emulsifying capacities of SPI. These findings might provide theory reference for elucidation the mechanism of polyphenols-proteins interaction and development of related food additive products in future
    corecore