43 research outputs found

    Magnetic field generation by pointwise zero-helicity three-dimensional steady flow of incompressible electrically conducting fluid

    Get PDF
    We introduce six families of three-dimensional space-periodic steady solenoidal flows, whose kinetic helicity density is zero at any point. Four families are analytically defined. Flows in four families have zero helicity spectrum. Sample flows from five families are used to demonstrate numerically that neither zero kinetic helicity density, nor zero helicity spectrum prohibit generation of large-scale magnetic field by the two most prominent dynamo mechanisms: the magnetic \alpha-effect and negative eddy diffusivity. Our computations also attest that such flows often generate small-scale field for sufficiently small magnetic molecular diffusivity. These findings indicate that kinetic helicity and helicity spectrum are not the quantities controlling the dynamo properties of a flow regardless of whether scale separation is present or not.Comment: 37 pages, 11 figures, 54 reference

    The Cauchy-Lagrangian method for numerical analysis of Euler flow

    Full text link
    A novel semi-Lagrangian method is introduced to solve numerically the Euler equation for ideal incompressible flow in arbitrary space dimension. It exploits the time-analyticity of fluid particle trajectories and requires, in principle, only limited spatial smoothness of the initial data. Efficient generation of high-order time-Taylor coefficients is made possible by a recurrence relation that follows from the Cauchy invariants formulation of the Euler equation (Zheligovsky & Frisch, J. Fluid Mech. 2014, 749, 404-430). Truncated time-Taylor series of very high order allow the use of time steps vastly exceeding the Courant-Friedrichs-Lewy limit, without compromising the accuracy of the solution. Tests performed on the two-dimensional Euler equation indicate that the Cauchy-Lagrangian method is more - and occasionally much more - efficient and less prone to instability than Eulerian Runge-Kutta methods, and less prone to rapid growth of rounding errors than the high-order Eulerian time-Taylor algorithm. We also develop tools of analysis adapted to the Cauchy-Lagrangian method, such as the monitoring of the radius of convergence of the time-Taylor series. Certain other fluid equations can be handled similarly.Comment: 30 pp., 13 figures, 45 references. Minor revision. In press in Journal of Scientific Computin

    Eddy diffusivity in convective hydromagnetic systems

    Full text link
    An eigenvalue equation, for linear instability modes involving large scales in a convective hydromagnetic system, is derived in the framework of multiscale analysis. We consider a horizontal layer with electrically conducting boundaries, kept at fixed temperatures and with free surface boundary conditions for the velocity field; periodicity in horizontal directions is assumed. The steady states must be stable to short (fast) scale perturbations and possess symmetry about the vertical axis, allowing instabilities involving large (slow) scales to develop. We expand the modes and their growth rates in power series in the scale separation parameter and obtain a hierarchy of equations, which are solved numerically. Second order solvability condition yields a closed equation for the leading terms of the asymptotic expansions and respective growth rate, whose origin is in the (combined) eddy diffusivity phenomenon. For about 10% of randomly generated steady convective hydromagnetic regimes, negative eddy diffusivity is found.Comment: 18 pages. Added numerical reults. Submitted to European Physical Journal

    Dependence of magnetic field generation by thermal convection on the rotation rate: a case study

    Full text link
    Dependence of magnetic field generation on the rotation rate is explored by direct numerical simulation of magnetohydrodynamic convective attractors in a plane layer of conducting fluid with square periodicity cells for the Taylor number varied from zero to 2000, for which the convective fluid motion halts (other parameters of the system are fixed). We observe 5 types of hydrodynamic (amagnetic) attractors: two families of two-dimensional (i.e. depending on two spatial variables) rolls parallel to sides of periodicity boxes of different widths and parallel to the diagonal, travelling waves and three-dimensional "wavy" rolls. All types of attractors, except for one family of rolls, are capable of kinematic magnetic field generation. We have found 21 distinct nonlinear convective MHD attractors (13 steady states and 8 periodic regimes) and identified bifurcations in which they emerge. In addition, we have observed a family of periodic, two-frequency quasiperiodic and chaotic regimes, as well as an incomplete Feigenbaum period doubling sequence of bifurcations of a torus followed by a chaotic regime and subsequently by a torus with 1/3 of the cascade frequency. The system is highly symmetric. We have found two novel global bifurcations reminiscent of the SNIC bifurcation, which are only possible in the presence of symmetries. The universally accepted paradigm, whereby an increase of the rotation rate below a certain level is beneficial for magnetic field generation, while a further increase inhibits it (and halts the motion of fluid on continuing the increase) remains unaltered, but we demonstrate that this "large-scale" picture lacks many significant details.Comment: 39 pp., 22 figures (some are low quality), 5 tables. Accepted in Physica
    corecore