98 research outputs found

    Real-time Controllable Denoising for Image and Video

    Full text link
    Controllable image denoising aims to generate clean samples with human perceptual priors and balance sharpness and smoothness. In traditional filter-based denoising methods, this can be easily achieved by adjusting the filtering strength. However, for NN (Neural Network)-based models, adjusting the final denoising strength requires performing network inference each time, making it almost impossible for real-time user interaction. In this paper, we introduce Real-time Controllable Denoising (RCD), the first deep image and video denoising pipeline that provides a fully controllable user interface to edit arbitrary denoising levels in real-time with only one-time network inference. Unlike existing controllable denoising methods that require multiple denoisers and training stages, RCD replaces the last output layer (which usually outputs a single noise map) of an existing CNN-based model with a lightweight module that outputs multiple noise maps. We propose a novel Noise Decorrelation process to enforce the orthogonality of the noise feature maps, allowing arbitrary noise level control through noise map interpolation. This process is network-free and does not require network inference. Our experiments show that RCD can enable real-time editable image and video denoising for various existing heavy-weight models without sacrificing their original performance.Comment: CVPR 202

    Kinematic analysis and process optimization of root-cutting systems in field harvesting of garlic based on computer simulation technology

    Get PDF
    IntroductionRoot cutting is an important process in garlic field harvesting but is the weakest link in the full mechanization of garlic production. To improve the current situation of technological backwardness and poor operational quality of mechanized garlic root-cutting in the main garlic-producing regions of China, this study combined the physical characteristics and agronomic requirements of garlic plants, and proposed an innovative floating root-cutting technology for garlic combine harvesters that enables the top alignment of bulb, adaptive profiling floating of cutter, and embedded cutting of roots.MethodsThrough the kinematic analysis of the floating cutting process, the coordinate equations of the initial contact point of the bulb, the mathematical model of the floating displacement of the cutting component. Using computer simulation techniques, the dynamic simulation study of the floating cutting process was carried out in the rigid-flexible coupling numerical simulation model of root-cutting mechanism and garlic plant. The influence law of garlic conveying speed, extension spring preload force and stiffness on the floating displacement of the cutting component and the angular velocity of swing arm reset and its formation causes were analyzed by a single-factor simulation test. The key operating parameters of the root-cutting mechanism were optimized through the computerized virtual orthogonal test and fuzzy comprehensive evaluation.Results and discussionThe significance of the factors affecting the floating cutting performance decreased in the following order: extension spring preload force, garlic conveying speed and extension spring stiffness. The optimal parameter combination of the root cutting mechanism obtained from the optimization were as follow: extension spring preload force was 16 N, garlic conveying speed was 0.8 m/s, and extension spring stiffness was 215 N/m. Tests conducted with the optimal parameter combination yielded a root excision rate of 92.72%, which meets the requirements of Chinese garlic field harvesting quality. This study provides computer simulation optimization methods for the optimal design of the root-cutting mechanism, and also provides technical and equipment support for the full mechanization of garlic production in China

    The Giant Radio Array for Neutrino Detection

    Get PDF
    High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND) project consists of an array of ∼ 105 radio antennas deployed over ∼ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10−11E−2 GeV−1 cm−2 s−1 sr−1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs

    Atherosclerosis T1-weighted characterization (CATCH): evaluation of the accuracy for identifying intraplaque hemorrhage with histological validation in carotid and coronary artery specimens

    Get PDF
    Background: Coronary high intensity plaques (CHIPs) detected using cardiovascular magnetic resonance (CMR) coronary atherosclerosis T1-weighted characterization with integrated anatomical reference (CATCH) have been shown to be positively associated with high-risk morphology observed on intracoronary optical coherence tomography (OCT). This study sought to validate whether CHIPs detected on CATCH indicate the presence of intraplaque hemorrhage (IPH) through ex vivo imaging of carotid and coronary plaque specimens, with histopathology as the standard reference. Methods: Ten patients scheduled to undergo carotid endarterectomy underwent CMR with the conventional T1-weighted (T1w) sequence. Eleven carotid atherosclerotic plaques removed at carotid endarterectomy and six coronary artery endarterectomy specimens removed from patients undergoing coronary artery bypass grafting (CABG) were scanned ex vivo using both the conventional T1w sequence and CATCH. Both in vivo and ex vivo images were examined for the presence of IPH. The sensitivity, specificity, and Cohen Kappa (k) value of each scan were calculated using matched histological sections as the reference. k value between each scan in the discrimination of IPH was also computed. Results: A total of 236 in vivo locations, 328 ex vivo and matching histology locations were included for the analysis. Sensitivity, specificity, and k value were 76.7%, 95.3%, and 0.75 for in vivo T1w imaging, 77.2%, 97.4%, and 0.78 for ex vivo T1w imaging, and 95.0%, 92.1%, and 0.84 for ex vivo CATCH, respectively. Moderate agreement was reached between in vivo T1w imaging, ex vivo T1w imaging, and ex vivo CATCH for the detection of IPH: between in vivo T1w imaging and ex vivo CATCH (k = 0.68), between ex vivo T1w imaging and ex vivo CATCH (k = 0.74), between in vivo T1w imaging and ex vivo T1w imaging (k = 0.83). None of the coronary artery plaque locations showed IPH. Conclusion: This study demonstrated that carotid CHIPs detected by CATCH can be used to assess for IPH, a high-risk plaque feature

    The Knee of the Cosmic Hydrogen and Helium Spectrum below 1 PeV Measured by ARGO-YBJ and a Cherenkov Telescope of LHAASO

    Get PDF
    The measurement of cosmic ray energy spectra, in particular for individual species, is an essential approach in finding their origin. Locating the "knees" of the spectra is an important part of the approach and has yet to be achieved. Here we report a measurement of the mixed Hydrogen and Helium spectrum using the combination of the ARGO-YBJ experiment and of a prototype Cherenkov telescope for the LHAASO experiment. A knee feature at 640+/-87 TeV, with a clear steepening of the spectrum, is observed. This gives fundamental inputs to galactic cosmic ray acceleration models

    Effect of external beam radiation therapy versus transcatheter arterial chemoembolization for non-diffuse hepatocellular carcinoma (≥ 5 cm): a multicenter experience over a ten-year period

    Get PDF
    BackgroundThe optimal local treatment for HCC with tumor diameter ≥ 5 cm is not well established. This research evaluated the effectiveness of external beam radiation therapy (EBRT) versus transcatheter arterial chemoembolization (TACE) for HCC with tumor diameter ≥ 5 cm.MethodsA total of 1210 HCC patients were enrolled in this study, including 302 and 908 patients that received EBRT and TACE, respectively. Propensity score matching (PSM) was used to identify patient pairs with similar baseline characteristics. Overall survival (OS) was the primary study endpoint.ResultsWe identified 428 patients using 1:1 PSM for survival comparison. Compared with the TACE group, the EBRT group had a significantly longer median OS (mOS) before (14.9 vs. 12.3 months, p = 0.0085) and after (16.8 vs. 11.4 months, p = 0.0026) matching. In the subgroup analysis, compared with the TACE group, the EBRT group had a significantly longer mOS for HCC with tumor diameters of 5-7 cm (34.1 vs. 14.3 months, p = 0.04) and 7-10 cm (34.4 vs. 10 months, p = 0.00065), whereas for HCC with tumor diameters ≥ 10 cm, no significant difference in mOS was observed (11.2 vs. 11.2 months, p = 0.83). In addition, the multivariable Cox analysis showed that Child-A, alkaline phosphatase < 125 U/L, and EBRT were independent prognostic indicators for longer survival.ConclusionEBRT is more effective than TACE as the primary local treatment for HCC with tumor diameter ≥ 5 cm, especially for HCC with tumor diameter of 5-10 cm

    miR396-targeted AtGRF transcription factors are required for coordination of cell division and differentiation during leaf development in Arabidopsis

    Get PDF
    In plants, cell proliferation and polarized cell differentiation along the adaxial–abaxial axis in the primordium is critical for leaf morphogenesis, while the temporal–spatial relationships between these two processes remain largely unexplored. Here, it is reported that microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are required for leaf adaxial–abaxial polarity in Arabidopsis. Reduction of the expression of AtGRF genes by transgenic miR396 overexpression in leaf polarity mutants asymmetric leaves1 (as1) and as2 resulted in plants with enhanced leaf adaxial–abaxial defects, as a consequence of reduced cell proliferation. Moreover, transgenic miR396 overexpression markedly decreased the cell division activity and the expression of cell cycle-related genes, but resulted in an increased percentage of leaf cells with a higher ploidy level, indicating that miR396 negatively regulates cell proliferation by controlling entry into the mitotic cell cycle. miR396 is mainly expressed in the leaf cells arrested for cell division, coinciding with its roles in cell cycle regulation. These results together suggest that cell division activity mediated by miR396-targeted AtGRFs is important for polarized cell differentiation along the adaxial–abaxial axis during leaf morphogenesis in Arabidopsis

    The superiority and disciplining role of independent analysts

    No full text
    We show that although forecasts of independent analysts are less accurate ex post, they yield forecast errors that are more strongly associated with abnormal stock returns. This suggests that forecasts of independent analysts are superior to those of nonindependent analysts in representing ex ante market expectations. We also show that forecasts of nonindependent analysts become more accurate and less biased, and produce forecast errors more strongly associated with abnormal stock returns when independent analysts are following the same firms than when they are not. This suggests that the presence of independent analysts disciplines the behavior of nonindependent analysts.
    corecore