30 research outputs found

    A latent linear model for nonlinear coupled oscillators on graphs

    Full text link
    A system of coupled oscillators on an arbitrary graph is locally driven by the tendency to mutual synchronization between nearby oscillators, but can and often exhibit nonlinear behavior on the whole graph. Understanding such nonlinear behavior has been a key challenge in predicting whether all oscillators in such a system will eventually synchronize. In this paper, we demonstrate that, surprisingly, such nonlinear behavior of coupled oscillators can be effectively linearized in certain latent dynamic spaces. The key insight is that there is a small number of `latent dynamics filters', each with a specific association with synchronizing and non-synchronizing dynamics on subgraphs so that any observed dynamics on subgraphs can be approximated by a suitable linear combination of such elementary dynamic patterns. Taking an ensemble of subgraph-level predictions provides an interpretable predictor for whether the system on the whole graph reaches global synchronization. We propose algorithms based on supervised matrix factorization to learn such latent dynamics filters. We demonstrate that our method performs competitively in synchronization prediction tasks against baselines and black-box classification algorithms, despite its simple and interpretable architecture.Comment: 23 pages, 14 figure

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Shape Similarity Assessment Method for Coastline Generalization

    No full text
    Although shape similarity is one fundamental element in coastline generalization quality, its related research is still inadequate. Consistent with the hierarchical pattern of shape recognition, the Dual-side Bend Forest Shape Representation Model is presented by reorganizing the coastline into bilateral bend forests, which are made of continuous root-bends based on Constrained Delaunay Triangulation and Convex Hull. Subsequently, the shape contribution ratio of each level in the model is expressed by its area distribution in the model. Then, the shape similarity assessment is conducted on the model in a top–down layer by layer pattern. Contrast experiments are conducted among the presented method and the Length Ratio, Hausdorff Distance and Turning Function, showing the improvements of the presented method over the others, including (1) the hierarchical shape representation model can distinguish shape features of different layers on dual-side effectively, which is consistent with shape recognition, (2) its usability and stability among coastlines and scales, and (3) it is sensitive to changes in main shape features caused by coastline generalization

    Quality Assessment Method for Linear Feature Simplification Based on Multi-Scale Spatial Uncertainty

    No full text
    This study discusses a method for quantitative quality assessment for the simplification of linear features. Considering the multi-scale nature of linear features, this paper combines the improved Douglas–Peucker method without threshold and the multiway tree model to construct a weighted hierarchical linear feature representation model called the Douglas–Peucker Multiway Tree (DMC-tree). Subsequently, the uncertainty computation is conducted from the root of the DMC-Tree top-down level by level to obtain the quality indexes. Then, the quality index of the whole linear feature is obtained by combining the indexes of every layer together with their weights. The results of the presented method are compared with those of the length ratio method and the Hausdorff distance method. The results show the advantages of the presented method over the others, including (1) its sensitivity to feature points of multiple scales, (2) the quantitative characteristics of the indexes, and (3) the finer granularity in assessment

    On the generation of magnetic field enhanced microwave plasma line

    No full text
    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line. Published by AIP Publishing

    SUMOylation of SMAD4 by PIAS1 in Conjunction with Vimentin Upregulation Promotes Migration Potential in Non-Small Cell Lung Cancer

    No full text
    Background: The expression of vimentin as a marker of epithelial-to-mesenchymal transition (EMT) has been speculated to be associated with tissue heterogeneity and metastases of non-small cell lung cancer (NSCLC). Methods: This study utilized in vitro co-immunoprecipitation with small interfering RNAs (siRNAs) against protein inhibitors of STAT system type 1 (PIAS1) or SMAD4 in transforming growth factor-beta (TGF-β) signaling pathway in combination with SUMOylation assay. Results: We successfully demonstrated that PIAS1 enhanced SUMOylation of SMAD4 by forming a complex PIAS1-SUMO1-SMAD4 protein complex. This, in accordance with subsequently increased production of vimentin microfilaments, led to enhanced migration ability of non-small cell lung cancer (NSCLC) A549 line, observed from wound healing assay. Conclusions: Our results further supported the positive correlation of SUMOylated SMAD4 mediated by PIAS1 and downstream overexpression of vimentin. In addition, the observation that overexpression of vimentin in this certain cell line was not necessarily linked with accelerated relative wound closure raised concerns that further exploration will be needed to confirm if the causal relationship exists between vimentin expression and the metastases of NSCLC, and if so, to what extent vimentin contributes to it

    On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis

    No full text
    To unveil the characteristics and available propagation mechanism of coaxial-type microwave excited line-shape plasma, the effects of parameters including microwave power, working pressure, dielectric constant, and external magnetic field on the plasma distribution were numerically investigated by solving a coupled system of Maxwell's equations and continuity equations. Numerical results indicate that high microwave power, relatively high working pressure, low dielectric constant, and shaped magnetic field profiles will help produce a high-density and uniform plasma source. Exciting both ends by microwave contributed to the high-density and uniform plasma source as well. Possible mechanisms were analyzed by using the polarization model of low temperature plasma. The generation and propagation processes of the line-shape plasma mainly depend on the interaction of three aspects, i.e. the transmitted part, penetration part and absorptive part of the electromagnetic field. The numerical results were qualitatively consistent with available experimental results from literature. More elaborate descriptions of the three aspects and corresponding interactions among them need to be investigated further to improve the properties of the line-shape plasma
    corecore