19 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Exploration on Application of High Pressure Water Jet Cleaning Technology

    No full text
    at present, the three-dimensional cleaning machine involved in tank car cleaning technology in China has full-automatic function, which includes two main structures: three-dimensional positioning machine and high-pressure cleaning machine. However, the tank car cleaning process used in the railway field still has many shortcomings. For example, serious pollution, serious energy consumption, insecurity, etc. In order to improve such defects, it is necessary to introduce new processes and improve the previous cleaning processes. The introduction of new technology can reduce environmental pollution and save capital cost. It can adapt to the development of the times and meet people's needs. Therefore, this paper expounds and analyzes the high-pressure water jet cleaning technology in railway tank cars from the aspects of application and improvement, and puts forward the corresponding improvement measures for reference

    Numerical Study on Failure Mechanisms of Shaft Wall Consisting of Steel Plate and Concrete under the Effects of Explosion

    No full text
    To enhance the antidynamic and static load resistance of reinforced concrete structures, the measure of covering steel plates on the inner surface of concrete structures arises, which has been rapidly developed and applied in civil engineering and other fields and has achieved a good performance. A new shaft wall structure consisting of steel plate reinforced concrete has been widely used in shaft of deep mining. In order to investigate the stability and obtain the optimum structure parameters of the new shaft structure, the numerical software of LS-DYNA was used to analyze the influences of different factors, including the explosive payload, steel plate thickness, concrete strength grade, and the included joint angle between two plates, on the stability of steel plate reinforced concrete structures. After the verification of the accuracy of numerical simulation results, 23 simulation schemes were proposed and numerically calculated. For all the tests, the principal tensile stress and particle vibration velocity were, respectively, chosen as the failure criteria to evaluate the impacts of those four factors. The results indicate that a quadratic function can be well used to describe the relationships between each factor and both the principal tensile stress and particle vibration velocity. Based on the results, the optimum structure parameters were finally determined, which are suggested as 250 kg, 15 mm, C85, and 40° for the explosive payload, steel plate thickness, concrete strength grade, and joint angle, respectively. The research results can provide a certain theoretical basis and design guidance for solving the problem of water leakage of single-layer shaft wall structures

    MRF-Based Disparity Upsampling Using Stereo Confidence Evaluations

    No full text

    Numerical Study on the Mechanism and Application of Artificial Free Surfaces in Bedrock Blasting of Shield Tunnels

    No full text
    During the pretreatment construction of blasting in shield tunnel bedrock, in order to reduce the impact of blasting vibration on the surrounding environment and improve the effect of rock blasting, the method of creating an artificial free surface is proposed. From the point of creating an artificial free surface, this paper numerically studies the function mechanism and parameter optimization of artificial free faces in shield tunnel bedrock blasting construction. The propagation characteristics of explosion stress waves at the interface between the rock and the artificial free face and the effect of the artificial free face on the shield tunnel bedrock blasting were analyzed. The results indicate that, as the explosion stress wave transmits to the artificial free face, a part of the stress wave is reflected back to the bedrock, increasing the energy in the bedrock that needs blasting and improving the blasting effect and utilization rate of the blasting energy. The reduction degree of the peak velocity of the surface particle is more than 50%, and the reduction degree of the peak velocity of the particle near the artificial free face is more than 77%. The existence of the artificial free face reflects the stress wave and superimposes with the original stress waves, increasing the effective stress in the blasting area, and the effective stress can be increased by 5 MPa or more. The peak vibration velocity of the surface particle decreases with an increasing diameter of the empty holes and the distance between the empty holes and the blasting holes. The parameter design value of the artificial free face is put forward: the diameter of the hole is 200 mm, the distance between the empty holes and the center of the blasting holes is 60 cm, and the depth of the empty hole is the same as the blasting hole

    On the generation of magnetic field enhanced microwave plasma line

    No full text
    Microwave linear plasmas sustained by surface waves have attracted much attention due to the potential abilities to generate large-scale and uniform non-equilibrium plasmas. An external magnetic field was generally applied to enhance and stabilize plasma sources because the magnetic field decreased the electron losses on the wall. The effects of magnetic field on the generation and propagation mechanisms of the microwave plasma were tentatively investigated based on a 2-D numerical model combining a coupled system of Maxwell's equations and continuity equations. The mobility of electrons and effective electric conductivity of the plasma were considered as a full tensor in the presence of magnetic field. Numerical results indicate that both cases of magnetic field in the axial-direction and radial-direction benefit the generation of a high-density plasma; the former one allows the microwave to propagate longer in the axis direction compared to the latter one. The time-averaged power flow density and the amplitude of the electric field on the inner rod of coaxial waveguide attenuate with the propagation of the microwave for both cases of with and without external magnetic field. The attenuation becomes smaller in the presence of appropriately higher axial-direction magnetic field, which allows more microwave energies to transmit along the axial direction. Meanwhile, the anisotropic properties of the plasma, like electron mobility, in the presence of the magnetic field confine more charged particles in the direction of the magnetic field line. Published by AIP Publishing

    On the Characteristics of Coaxial-Type Microwave Excited Linear Plasma: a Simple Numerical Analysis

    No full text
    To unveil the characteristics and available propagation mechanism of coaxial-type microwave excited line-shape plasma, the effects of parameters including microwave power, working pressure, dielectric constant, and external magnetic field on the plasma distribution were numerically investigated by solving a coupled system of Maxwell's equations and continuity equations. Numerical results indicate that high microwave power, relatively high working pressure, low dielectric constant, and shaped magnetic field profiles will help produce a high-density and uniform plasma source. Exciting both ends by microwave contributed to the high-density and uniform plasma source as well. Possible mechanisms were analyzed by using the polarization model of low temperature plasma. The generation and propagation processes of the line-shape plasma mainly depend on the interaction of three aspects, i.e. the transmitted part, penetration part and absorptive part of the electromagnetic field. The numerical results were qualitatively consistent with available experimental results from literature. More elaborate descriptions of the three aspects and corresponding interactions among them need to be investigated further to improve the properties of the line-shape plasma
    corecore