64 research outputs found

    Plasmodium falciparum populations from northeastern Myanmar display high levels of genetic diversity at multiple antigenic loci

    Full text link
    Levels of genetic diversity of the malaria parasites and multiclonal infections are correlated with transmission intensity. In order to monitor the effect of strengthened malaria control efforts in recent years at the China-Myanmar border area, we followed the temporal dynamics of genetic diversity of three polymorphic antigenic markers msp1, msp2, and glurp in the Plasmodium falciparum populations. Despite reduced malaria prevalence in the region, parasite populations exhibited high levels of genetic diversity. Genotyping 258 clinical samples collected in four years detected a total of 22 PCR size alleles. Multiclonal infections were detected in 45.7% of the patient samples, giving a minimum multiplicity of infection of 1.41. The majority of alleles experienced significant temporal fluctuations through the years. Haplotype diversity based on the three-locus genotypes ranged from the lowest in 2009 at 0.33 to the highest in 2010 at 0.80. Sequencing of msp1 fragments from 36 random samples of five allele size groups detected 13 different sequences, revealing an additional layer of genetic complexity. This study suggests that despite reduced prevalence of malaria infections in this region, the parasite population size and transmission intensity remained high enough to allow effective genetic recombination of the parasites and continued maintenance of genetic diversity

    Frequent Spread of Plasmodium vivax Malaria Maintains High Genetic Diversity at the Myanmar-China Border, Without Distance and Landscape Barriers

    Full text link
    BackgroundIn Myanmar, civil unrest and the establishment of internally displaced person (IDP) settlements along the Myanmar-China border have impacted malaria transmission.MethodsMicrosatellite markers were used to examine source-sink dynamics for Plasmodium vivax between IDP settlements and surrounding villages in the border region. Genotypic structure and diversity were compared across the 3 years following the establishment of IDP settlements, to infer demographic history. We investigated whether human migration and landscape heterogeneity contributed to P. vivax transmission.ResultsP. vivax from IDP settlements and local communities consistently exhibited high genetic diversity within populations but low polyclonality within individuals. No apparent genetic structure was observed among populations and years. P. vivax genotypes in China were similar to those in Myanmar, and parasite introduction was unidirectional. Landscape factors, including distance, elevation, and land cover, do not appear to impede parasite gene flow.ConclusionsThe admixture of P. vivax genotypes suggested that parasite gene flow via human movement contributes to the spread of malaria both locally in Myanmar and across the international border. Our genetic findings highlight the presence of large P. vivax gene reservoirs that can sustain transmission. Thus, it is important to reinforce and improve existing control efforts along border areas

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Cluster emission in massive transfer reactions based on dinuclear system model

    No full text
    BackgroundThe pre-equilibrium cluster manifests the nuclear structure and reaction dynamics of collision system. The systematical investigation of cluster emission in transfer reactions is of significance in deep understanding of the synthesis of superheavy nuclei, shell evolution, new isotope production, etc.PurposeThe dynamics of pre-equilibrium cluster in a few of nucleon transfer reaction has been described by theoretical model, such as exciton model, cluster model. However, the cluster emission in massive transfer is very complicated because of the emission mechanism associated with the structure properties and also the dynamical process.MethodsIn this work, the pre-equilibrium cluster emission in massive transfer reaction has been systematically investigated within the dinuclear system model. The model has been successfully used for describing the massive fusion reaction and multi-nucleon transfer dynamics. The nucleon exchange and energy dissipation take place once the dinuclear system is formed. The nucleon transfer between the binary fragments is governed by the single-particle Hamiltonian and proceeds around the Fermi surface formed by the dinuclear system. The master equation is used for the nucleon transfer dynamics and the relative motion energy dissipation is taken into account. The dynamics of neutron, proton, deuteron, triton, 3He, 4He, 6,7Li and 8,9Be in collisions of 12C+209Bi, 40Ca+208Pb and 48Ca+238U near Coulomb barrier energies is analyzed, i.e., temporal evolution of production rate, kinetic energy spectra and angular distribution.ResultsIt is found that the emission probability of 4He is the same magnitude of proton emission and several orders larger than the one of 3He. Both the nuclear structure and dynamical effects influence the pre-equilibrium cluster production.ConclusionsThe pre-equilibrium clusters are emitted from the 'projectile-like' and 'target-like' fragments and the angular distributions manifest the similar trends. The kinetic energy spectra of clusters are shown as the Boltzmann distribution. The method is also extended to the cluster emission in weakly bound nuclei induced reactions by considering the preformation factor for the cluster construction

    NR-DFERNet: Noise-Robust Network for Dynamic Facial Expression Recognition

    Full text link
    Dynamic facial expression recognition (DFER) in the wild is an extremely challenging task, due to a large number of noisy frames in the video sequences. Previous works focus on extracting more discriminative features, but ignore distinguishing the key frames from the noisy frames. To tackle this problem, we propose a noise-robust dynamic facial expression recognition network (NR-DFERNet), which can effectively reduce the interference of noisy frames on the DFER task. Specifically, at the spatial stage, we devise a dynamic-static fusion module (DSF) that introduces dynamic features to static features for learning more discriminative spatial features. To suppress the impact of target irrelevant frames, we introduce a novel dynamic class token (DCT) for the transformer at the temporal stage. Moreover, we design a snippet-based filter (SF) at the decision stage to reduce the effect of too many neutral frames on non-neutral sequence classification. Extensive experimental results demonstrate that our NR-DFERNet outperforms the state-of-the-art methods on both the DFEW and AFEW benchmarks.Comment: 10 page

    Progress in strange particle production and hypernuclear physics in intermediate and high-energy heavy-ion collisions

    No full text
    We reviewed the recent progress on strange particle production and hypernuclear physics both in experiments and in theories. The temporal evolutions of nucleons and resonances are described by the Skyrme energy density functional and relativistic covariant density functional theory, in which the meson-nucleon and hyperon-nucleon interactions are considered. Calculations are performed for the reactions of 12C+12C, 40Ca+40Ca, 112Sn+112Sn, and 197Au+197Au. The in-medium effects and high-density symmetry energy from the production of kaon, antikaon, and hyperon (Λ, Σ, Ξ) are investigated systematically. A quantum coalescence method is used to construct the hypernucleus, and the phase-space distribution is investigated in terms of the mass, charge, kinetic energy, rapidity distribution, collective flows, etc. Pre-equilibrium cluster emission in heavy-ion collisions is analyzed by implementing 2-, 3-, and 4-body nucleon collisions. The relativistic quantum molecular dynamics model is introduced by including ρ and δ coupling for nucleon transportation, and the collective flows are calculated for protons and neutrons

    Intensity-Aware Loss for Dynamic Facial Expression Recognition in the Wild

    No full text
    Compared with the image-based static facial expression recognition (SFER) task, the dynamic facial expression recognition (DFER) task based on video sequences is closer to the natural expression recognition scene. However, DFER is often more challenging. One of the main reasons is that video sequences often contain frames with different expression intensities, especially for the facial expressions in the real-world scenarios, while the images in SFER frequently present uniform and high expression intensities. Nevertheless, if the expressions with different intensities are treated equally, the features learned by the networks will have large intra-class and small inter-class differences, which are harmful to DFER. To tackle this problem, we propose the global convolution-attention block (GCA) to rescale the channels of the feature maps. In addition, we introduce the intensity-aware loss (IAL) in the training process to help the network distinguish the samples with relatively low expression intensities. Experiments on two in-the-wild dynamic facial expression datasets (i.e., DFEW and FERV39k) indicate that our method outperforms the state-of-the-art DFER approaches. The source code will be available at https://github.com/muse1998/IAL-for-Facial-Expression-Recognition
    corecore