258 research outputs found

    Improving the size selectivity of trawl codends for northern shrimp (Pandalus borealis) and redfish (Sebastes spp.) fisheries in the North Atlantic

    Get PDF
    A bottom trawl is a towed fishing gear that is designed to catch commercially important species that live in close proximity to the seafloor. In the Northwest Atlantic, bottom trawls are widely used to harvest shrimp, redfish, and various groundfish species. Coastal fishing fleets in both Canada and Iceland have been using bottom trawls to harvest northern shrimp (Pandalus borealis) and redfish (Sebastes spp.) for several decades. The codend of these fishing gears plays an important role in reducing unintended bycatch of non-targeted species and sizes of animals. Careful design and engineering of these codends is a necessary step in the fishing gear development cycle. In this thesis, I conducted different experiments, including laboratory and field work, to improve the size selectivity of codends for northern shrimp and redfish in the North Atlantic. In my first experiment, I compared the performance of different codends on the size selectivity of shrimp in the coastal fishery of Iceland. I compared codends of same nominal mesh size (42 mm) constructed using netting in the traditional orientation (T0, two-panel) against experimental codends constructed using netting rotated 45į“¼ (T45, two-panel) and 90į“¼ (T90, four-panel). My results revealed that the T90 codend retained significantly less shrimp between 9 and 19 mm carapace length than the T0 codend, and between 15 and 19 mm than the T45 codend. Since discarding of undersized shrimp is prohibited in Iceland, using the T90 codend would enable fishers to use their quotas more efficiently. In my second experiment, I compared the performance of two different codends on the size selectivity of redfish in a commercial fishery off the south coast of Iceland. The codends varied in their design, mesh size (inside-knots measurement), and construction (i.e., knotted vs. knotless). My results showed that there was no significant difference in size selectivity between the codends at lengths greater than 29 cm for S. norvegicus and 19 cm for S. viviparous. At smaller lengths, size selectivity was undetermined due to small catches at those sizes. In my third experiment, I compared the performance of four different codends on the size selectivity of redfish in eastern Canada (Unit 1, Gulf of St. Lawrence). I evaluated a traditional diamond mesh codend with a nominal mesh size of 90 mm and three experimental T90 codends of different nominal mesh sizes (90, 100, 110 mm). My results demonstrated that the traditional codend was not size selective, catching greater than 97% of redfish over all of the length classes observed. Overall, my results reveal that T90 codends improve size selectivity in which large proportions of undersized fish are successfully released. In my final experiment, I examined the hydrodynamic performance of full-scale T0 and T90 codends with and without a cover net using the flume tank located at the Fisheries and Marine Institute. I measured flow velocity, mesh shape, mesh opening, and drag at various towing velocities. The results showed that the flow velocity inside each codend was lower than the towing velocity. T90 codends had higher flow velocity and better mesh opening than the T0 near the terminal end of the codend. The total drag of each T90 codend was significantly higher than the T0. With the cover net, the flow velocity in the area between codend and the cover did not change significantly for the T0 codend, but was significantly different for the T90 (90 mm) codend. In summary, the findings from this thesis confirm the importance of codend design on the size selectivity of bottom trawls. Changes in mesh size and mesh orientation in particular, were shown to significantly affect the size selectivity of northern shrimp (Iceland) and redfish (Iceland and Canada). These results could prove helpful in the pursuit of sustainable fisheries, whereby smaller undesirable or non-targeted animals can be released from codends during towing operations, preventing their unnecessary capture and mortality

    Strategies to reduce nutrient pollution from manure management in China

    Get PDF
    As the demand for livestock products continues to increase in China, so too does the challenge of managing increasing quantities of manure. Urgent action is needed to control point source (housing, storage and processing) and diffuse (field application) pollution and improve the utilization of manure nutrients and organic matter. Here, we review strategies to improve management at each stage of the manure management chain and at different scales. Many strategies require infrastructure investment, e.g., for containment of all manure fractions. Engineering solutions are needed to develop advanced composting systems with lower environmental footprints and design more efficient nutrient stripping technologies. At the field-scale, there is an urgent need to develop a manure nutrient recommendation system that accounts for the range of manure types, cropping systems, soils and climates throughout China. At the regional scale, coordinated planning is necessary to promote recoupling of livestock and cropping systems, and reduce nutrient accumulation in regions with little available landbank, while minimizing the risk of pollution swapping from one region to another. A range of stakeholders are needed to support the step change and innovation required to improve manure management, reduce reliance on inorganic fertilizers, and generate new business opportunities

    Methane emissions and microbial communities as influenced by dual cropping of <em>Azolla</em> along with early Rice

    Get PDF
    Azolla caroliniana Willd. is widely used as a green manure accompanying rice, but its ecological importance remains unclear, except for its ability to fix nitrogen in association with cyanobacteria. To investigate the impacts of Azolla cultivation on methane emissions and environmental variables in paddy fields, we performed this study on the plain of Dongting Lake, China, in 2014. The results showed that the dual cropping of Azolla significantly suppressed the methane emissions from paddies, likely due to the increase in redox potential in the root region and dissolved oxygen concentration at the soil-water interface. Furthermore, the floodwater pH decreased in association with Azolla cultivation, which is also a factor significantly correlated with the decrease in methane emissions. An increase in methanotrophic bacteria population (pmoA gene copies) and a reduction in methanogenic archaea (16S rRNA gene copies) were observed in association with Azolla growth. During rice cultivation period, dual cropping of Azolla also intensified increasing trend of 1/Simpson of methanogens and significantly decreased species richness (Chao 1) and species diversity (1/Simpson, 1/D) of methanotrophs. These results clearly demonstrate the suppression of CH(4) emissions by culturing Azolla and show the environmental and microbial responses in paddy soil under Azolla cultivation

    Mutations in an Atypical TIR-NB-LRR-LIM Resistance Protein Confer Autoimmunity

    Get PDF
    In order to defend against microbial infection, plants employ a complex immune system that relies partly on resistance (R) proteins that initiate intricate signaling cascades upon pathogen detection. The resistance signaling network utilized by plants is only partially characterized. A genetic screen conducted to identify novel defense regulators involved in this network resulted in the isolation of the snc6-1D mutant. Positional cloning revealed that this mutant contained a molecular lesion in the chilling sensitive 3 (CHS3) gene, thus the allele was renamed chs3-2D. CHS3 encodes a TIR-NB-LRR R protein that contains a C-terminal zinc-binding LIM (Lin-11, Isl-1, Mec-3) domain. Although this protein has been previously implicated in cold stress and defense response, the role of the LIM domain in modulating protein activity is unclear. The chs3-2D allele contains a G to A point mutation causing a C1340 to Y1340 substitution close to the LIM domain. It encodes a dominant gain-of-function mutation. The chs3-2D mutant is severely stunted and displays curled leaf morphology. Additionally, it constitutively expresses PATHOGENESIS-RELATED (PR) genes, accumulates salicylic acid, and shows enhanced resistance to the virulent oomycete isolate Hyaloperonospora arabidopsidis (H.a.) Noco2. Subcellular localization assays using GFP fusion constructs indicate that both CHS3 and chs3-2D localize to the nucleus. A third chs3 mutant allele, chs3-3D, was identified in an unrelated genetic screen in our lab. This allele contains a C to T point mutation resulting in an M1017 to V1017 substitution in the LRRā€“LIM linker region. Additionally, a chs3-2D suppressor screen identified two revertant alleles containing secondary mutations that abolish the mutant morphology. Analysis of the locations of these molecular lesions provides support for the hypothesis that the LIM domain represses CHS3 R-like protein activity. This repression may occur through either autoinhibition or binding of a negative defense regulator

    Global systematic review with meta-analysis reveals yield advantage of legume-based rotations and its drivers

    Get PDF
    Funding Information: This study was funded by the National Natural Science Foundation of China (32101850, H.D.Z.; 32172125, Z.H.Z.), the Young Elite Scientists Sponsorship Program by CAST (2020QNRC001, H.D.Z.), the Joint Funds of the National Natural Science Foundation of China (U21A20218, Z.H.Z.) and the earmarked fund for China Agriculture Research System (CARS-07-B-5, Z.H.Z.). Contributions from Dr. Ji Chen are funded by H2020 Marie Skłodowska-Curie Actions (No. 839806), Aarhus University Research Foundation (AUFF-E-2019-7-1), Danish Independent Research Foundation (1127-00015B), and Nordic Committee of Agriculture and Food Research. We thank the authors whose work is included in this meta-analysis. We also thank Beibei Xin and Zhen Qin for their assistance on high-performance computing and the High-performance Computing Platform of China Agricultural University.Peer reviewedPublisher PD

    China's low-emission pathways toward climate-neutral livestock production for animal-derived foods

    Get PDF
    Funding Information: This research was supported by the National Natural Science Foundation of China (Grant No. 31922080 and 31872403 ), China Agriculture Research System of MOF and MARA and the Hunan province science and technology plan (Grant No. 2022NK2021 ).Peer reviewedPublisher PD

    Nitrogen, Phosphorus, and Potassium Flows through the Manure Management Chain in China

    Get PDF
    The largest livestock production and greatest fertilizer use in the world occurs in China. However, quantification of the nutrient flows through the manure management chain and their interactions with management-related measures is lacking. Herein, we present a detailed analysis of the nutrient flows and losses in the ā€œfeed intakeā€“excretionā€“housingā€“storageā€“treatmentā€“applicationā€ manure chain, while considering differences among livestock production systems. We estimated the environmental loss from the manure chain in 2010 to be up to 78% of the excreted nitrogen and over 50% of the excreted phosphorus and potassium. The greatest losses occurred from housing and storage stages through NH<sub>3</sub> emissions (39% of total nitrogen losses) and direct discharge of manure into water bodies or landfill (30ā€“73% of total nutrient losses). There are large differences among animal production systems, where the landless system has the lowest manure recycling. Scenario analyses for the year 2020 suggest that significant reductions of fertilizer use (27ā€“100%) and nutrient losses (27ā€“56%) can be achieved through a combination of prohibiting manure discharge, improving manure collection and storages infrastructures, and improving manure application to cropland. We recommend that current policies and subsidies targeted at the fertilizer industry should shift to reduce the costs of manure storage, transport, and application

    Impaired Magnesium Protoporphyrin IX Methyltransferase (ChlM) Impedes Chlorophyll Synthesis and Plant Growth in Rice

    Get PDF
    Magnesium protoporphyrin IX methyltransferase (ChlM) catalyzes the formation of magnesium protoporphyrin IX monomethylester (MgPME) from magnesium protoporphyrin IX (MgP) in the chlorophyll synthesis pathway. However, no ChlM gene has yet been identified and studied in monocotyledonous plants. In this study, a spontaneous mutant, yellow-green leaf 18 (ygl18), was isolated from rice (Oryza sativa). This mutant showed yellow-green leaves, decreased chlorophyll level, and climate-dependent growth differences. Map-based cloning of this mutant identified the YGL18 gene LOC_Os06g04150. YGL18 is expressed in green tissues, especially in leaf organs, where it functions in chloroplasts. YGL18 showed an amino-acid sequence similarity to that of ChlM from different photosynthetic organisms. In vitro enzymatic assays demonstrated that YGL18 performed ChlM enzymatic activity, but ygl18 had nearly lost all ChlM activity. Correspondingly, the substrate MgP was largely accumulated while the product MgPME was reduced in ygl18 leaves. YGL18 is required for light-dependent and photoperiod-regulated chlorophyll synthesis. The retarded growth of ygl18 mutant plants was caused by the high light intensity. Moreover, the higher light intensity and longer exposure in high light intensity even made the ygl18 plants be more susceptible to death. Based on these results, it is suggested that YGL18 plays essential roles in light-related chlorophyll synthesis and light intensityā€“involved plant growth

    Chinaā€™s pig relocation in balance

    Get PDF
    In 2015, the Chinese government banned livestock production in some regions (called non-livestock production regions, NLPRs) to control surface water pollution near vulnerable water bodies. In total, 90,000 NLPRs had been established by 2017, covering a land area of 0.82 million km2 and shutting down 0.26 million pig farms1. As a consequence, the number of slaughtered pigs decreased by 46 million head yrā€“1 between 2014 and 2017. The NLPRs policy is globally unprecedented in terms of the geographical area and number of farms affected, as well as its implementation speed. The NLPRs policy has reduced pork self-sufficiency in some provinces by up to 40% (ref. 2). However, it is unclear which farms and regions may take over the market share
    • ā€¦
    corecore