795 research outputs found

    Numerical Research on The Nozzle Damping Effect by A Wave Attenuation Method

    Get PDF
    AbstractNozzle damping is one of the most important factors in the suppression of combustion instability in solid rocket motors. For an engineering solid rocket motor that experiences combustion instability at the end of burning, a wave attenuation method is proposed to assess the nozzle damping characteristics numerically. In this method, a periodic pressure oscillation signal which frequency equals to the first acoustic mode is superimposed on a steady flow at the head end of the chamber. When the pressure oscillation is turned off, the decay rate of the pressure can be used to determine the nozzle attenuation constant. The damping characteristics of three other nozzle geometries are numerically studied with this method under the same operating condition. The results show that the convex nozzle provides more damping than the conical nozzle which in turn provides more damping than the concave nozzle. All the three nozzles have better damping effect than that of basic nozzle geometry. At last, the phase difference in the chamber is analyzed, and the numerical pressure distribution satisfies well with theoretical distribution

    Adjustment of the GRACE score by HemoglobinA1c enables a more accurate prediction of long-term major adverse cardiac events in acute coronary syndrome without diabetes undergoing percutaneous coronary intervention

    Get PDF
    Background: The Global Registry of Acute Coronary Events (GRACE) risk score is widely recommended for risk assessment in patients with acute coronary syndrome (ACS). Chronic hyperglycemia [hemoglobinA1c (HbA1c)] can independently predict major adverse cardiac events (MACEs) in patients with ACS. We investigated whether the prediction of MACEs with the GRACE score could be improved with the addition of HbA1c content in ACS patients without diabetes mellitus (DM) undergoing percutaneous coronary intervention (PCI). Methods: We enrolled 549 ACS patients without DM who underwent PCI. The GRACE score and HbA1c content were determined on admission. Correlation was analyzed by Spearman's rank correlation. Cumulative MACE curve was calculated using the Kaplan-Meier method. Multivariate Cox regression was used to identify predictors of MACEs. Additionally, the predictive value of HbA1c content alone and combined with GRACE score was estimated by the area under the receiver-operating characteristic curve (AUC), continuous net reclassification improvement (NRI) and integrated discrimination improvement (IDI). Results: During a median of 42.3 months (interquartile range 39.3-44.2 months), 16 (2.9 %) were lost to follow-up, and patients experienced 69 (12.9 %) MACEs: 51 (9.6 %) all-cause deaths and 18 (3.4 %) nonfatal myocardial infarction cases. The GRACE score was positively associated with HbA1c content. Multivariate Cox analysis showed that both GRACE score and HbA1c content were independent predictors of MACEs (hazard ratio 1.030; 95 % CI 1.020-1.040; p < 0.001; 3.530; 95 % CI 1.927-6.466; p < 0.001, respectively). Furthermore, Kaplan-Meier analysis demonstrated increased risk of MACEs with increasing HbA1c content (log-rank 33.906, p < 0.001). Adjustment of the GRACE risk estimate by HbA1c improved the predictive value of the GRACE score [increase in AUC from 0.75 for the GRACE score to 0.80 for the GRACE score plus HbA1c, p = 0.012; IDI = 0.055, p < 0.001; NRI (> 0) = 0.70, p < 0.001]. Conclusions: HbA1c content is positively associated with GRACE risk score and their combination further improved the risk stratification for ACS patients without DM undergoing PCI.National Natural Science Foundation of China [91339116, 81400181]; National Natural Science Fund for Distinguished Young Scholars of China [81025002]; National Basic Research Program of China ("973 Project") [2012CB517804]SCI(E)[email protected]

    Modular polyoxometalate-intercalated layered double hydroxide membranes for molecular sieving and in situ regeneration

    Get PDF
    The design and synthesis of two-dimensional membranes with ultra-high permeability, selectivity, and antifouling properties have been a significant challenge. Herein, we propose a facile approach to design modular polyoxometalate-intercalated layered double hydroxide membranes using a charge-driven self-assembly process. The resultant MgAl-SiW12 membrane shows 4 times higher water permeance (>130 L m−2 h−1 bar−1) than that of its MgAl-NO3 precursor. Excellent retention of >99% for Congo red and Evans blue is achieved by the MgAl-SiW12 membrane, which can be regenerated (permeance recovery > 95%) via a simple UV-vis irradiation cycle. Insertion of the SiW12 cluster into layered double hydroxide allows precise control and modulation of the interlayer’s spacing and hydrophilicity and promotes spontaneous electron migration and interfacial charge carrier separation. Moreover, the ·OH and ·O2− radicals forming during the irradiation process are responsible for the degradation of contaminants

    Tumor Tissue-Derived Formaldehyde and Acidic Microenvironment Synergistically Induce Bone Cancer Pain

    Get PDF
    Background: There is current interest in understanding the molecular mechanisms of tumor-induced bone pain. Accumulated evidence shows that endogenous formaldehyde concentrations are elevated in the blood or urine of patients with breast, prostate or bladder cancer. These cancers are frequently associated with cancer pain especially after bone metastasis. It is well known that transient receptor potential vanilloid receptor 1 (TRPV1) participates in cancer pain. The present study aims to demonstrate that the tumor tissue-derived endogenous formaldehyde induces bone cancer pain via TRPV1 activation under tumor acidic environment. Methodology/Principal Findings: Endogenous formaldehyde concentration increased significantly in the cultured breast cancer cell lines in vitro, in the bone marrow of breast MRMT-1 bone cancer pain model in rats and in tissues from breast cancer and lung cancer patients in vivo. Low concentrations (1 similar to 5 mM) of formaldehyde induced pain responses in rat via TRPV1 and this pain response could be significantly enhanced by pH 6.0 (mimicking the acidic tumor microenvironment). Formaldehyde at low concentrations (1 mM to 100 mM) induced a concentration-dependent increase of [Ca(2+)]i in the freshly isolated rat dorsal root ganglion neurons and TRPV1-transfected CHO cells. Furthermore, electrophysiological experiments showed that low concentration formaldehyde-elicited TRPV1 currents could be significantly potentiated by low pH (6.0). TRPV1 antagonists and formaldehyde scavengers attenuated bone cancer pain responses. Conclusions/Significance: Our data suggest that cancer tissues directly secrete endogenous formaldehyde, and this formaldehyde at low concentration induces metastatic bone cancer pain through TRPV1 activation especially under tumor acidic environment.Multidisciplinary SciencesSCI(E)PubMed24ARTICLE4e10234

    Peiminine Inhibits Glioblastoma in Vitro and in Vivo Through Cell Cycle Arrest and Autophagic Flux Blocking

    Get PDF
    Background/Aims: Glioblastoma multiforme (GBM) is the most devastating and widespread primary central nervous system tumour in adults, with poor survival rate and high mortality rates. Existing treatments do not provide substantial benefits to patients; therefore, novel treatment strategies are required. Peiminine, a natural bioactive compound extracted from the traditional Chinese medicine Fritillaria thunbergii, has many pharmacological effects, especially anticancer activities. However, its anticancer effects on GBM and the underlying mechanism have not been demonstrated. This study was conducted to investigate the potential antitumour effects of peiminine in human GBM cells and to explore the related molecular signalling mechanisms in vitro and in vivo Methods: Cell viability and proliferation were detected with MTT and colony formation assays. Morphological changes associated with autophagy were assessed by transmission electron microscopy (TEM). The cell cycle rate was measured by flow cytometry. To detect changes in related genes and signalling pathways in vitro and in vivo, RNA-seq, Western blotting and immunohistochemical analyses were employed. Results: Peiminine significantly inhibited the proliferation and colony formation of GBM cells and resulted in changes in many tumour-related genes and transcriptional products. The potential anti-GBM role of peiminine might involve cell cycle arrest and autophagic flux blocking via changes in expression of the cyclin D1/CDK network, p62 and LC3. Changes in Changes in flow cytometry results and TEM findings were also observed. Molecular alterations included downregulation of the expression of not only phospho-Akt and phospho-GSK3β but also phospho-AMPK and phospho-ULK1. Furthermore, overexpression of AKT and inhibition of AKT reversed and augmented peiminine-induced cell cycle arrest in GBM cells, respectively. The cellular activation of AMPK reversed the changes in the levels of protein markers of autophagic flux. These results demonstrated that peiminine mediates cell cycle arrest by suppressing AktGSk3β signalling and blocks autophagic flux by depressing AMPK-ULK1 signalling in GBM cells. Finally, peiminine inhibited the growth of U251 gliomas in vivo. Conclusion: Peiminine inhibits glioblastoma in vitro and in vivo via arresting the cell cycle and blocking autophagic flux, suggesting new avenues for GBM therapy

    Transposable element-initiated enhancer-like elements generate the subgenome-biased spike specificity of polyploid wheat

    Get PDF
    Transposable elements (TEs) comprise ~85% of the common wheat genome, which are highly diverse among subgenomes, possibly contribute to polyploid plasticity, but the causality is only assumed. Here, by integrating data from gene expression cap analysis and epigenome profiling via hidden Markov model in common wheat, we detect a large proportion of enhancer-like elements (ELEs) derived from TEs producing nascent noncoding transcripts, namely ELE-RNAs, which are well indicative of the regulatory activity of ELEs. Quantifying ELE-RNA transcriptome across typical developmental stages reveals that TE-initiated ELE-RNAs are mainly from RLG_famc7.3 specifically expanded in subgenome A. Acquisition of spike-specific transcription factor binding likely confers spike-specific expression of RLG_famc7.3-initiated ELE-RNAs. Knockdown of RLG_famc7.3-initiated ELE-RNAs resulted in global downregulation of spike-specific genes and abnormal spike development. These findings link TE expansion to regulatory specificity and polyploid developmental plasticity, highlighting the functional impact of TE-driven regulatory innovation on polyploid evolution

    Simulation of char-pellet combustion and sodium release inside porous char using lattice Boltzmann method

    Get PDF
    Char-pellet combustion is studied with the lattice Boltzmann method (LBM) including sodium release and the ash inhibition effect on oxygen diffusion in the porous char. The sodium release and the shrinking of the char pellet are simulated by accounting for the reactions occurring both in the solid and gas phases. The combustion of a single char pellet is considered first, and the results are compared against measurements. The simulation of the pellet mass, pellet temperature and sodium release agreed well with in-house optical measurements. The validated lattice Boltzmann approach is then extended to investigate the combustion of porous char and sodium release inside the porous medium. The pore-structure evolution and the flow path variation are simulated as combustion proceeds. The simulations reproduce the expected different behaviors between the combustion products (CO and CO2) and the released volatile, here the sodium vapor. The combustion products are mostly generated at the flame front and then transported by the flow and molecular diffusion inside the complex porous char structure. However, the volatile sodium vapor forms in the entire porous char and tends to accumulate in regions where the flow motion stays weak, as in internal flow microchannels, or blocked, as in closed pores. These results confirm the potential of the LBM formalism to tackle char-pellet combustion accounting for the topology of the porous medium.National Natural Science Foundation of China; China Postdoctoral Science Foundation; Royal Society and the Engineering and Physical Sciences Research Council (EPSRC) (UK
    • …
    corecore