120,754 research outputs found

    Investigation and prediction of slug flow characteristics in highly viscous liquid and gas flows in horizontal pipes

    Get PDF
    Slug flow characteristics in highly viscous liquid and gas flow are studied experimentally in a horizontal pipe with 0.074 m ID and 17 m length. Results of flow regime map, liquid holdup and pressure gradient are discussed and liquid viscosity effects are investigated. Applicable correlations which are developed to predict liquid holdup in slug body for low viscosity flow are assessed with high viscosity liquids. Furthermore, a mechanistic model is developed for predicting the characteristics of slug flows of highly viscous liquid in horizontal pipes. A control volume is drawn around the slug body and slug film in a slug unit. Momentum equations with a momentum source term representing the significant momentum exchange between film zone and slug body are applied. Liquid viscosity effects are considered in closure relations. The mechanistic model is validated by comparing available pressure gradient and mean slug liquid holdup data produced in the present study and those obtained from literature, showing satisfactory capabilities over a large range of liquid viscosity

    Mixed Power Control Strategies for Cognitive Radio Networks under SINR and Interference Temperature Constraints

    Get PDF
    Without consideration of the minimum signal-to-interference-plus-noise ratio (SINR) and frequent information exchange, traditional power control algorithms can not always satisfy SINR requirements of secondary users (SUs) and primary users (PUs) in cognitive radio networks. In this paper, a distributed power control problem for maximizing total throughput of SUs is studied subject to the SINR constraints of SUs and the interference constraints of PUs. To reduce message exchange among SUs, two improved methods are obtained by dual decomposition approaches. For a large-scale network, an average interference constraint is presented at the cost of performance degradation. For a small-scale network, a weighted interference constraint with fairness consideration is proposed to obtain good performance. Simulation results demonstrate that the proposed algorithm is superior to ADCPC and TPCG algorithms

    The non-linear evolution of bispectrum from the scale-free N-body simulation

    Full text link
    We have accurately measured the bispectrum for four scale-free models of structure formation with the spectral index n=1n=1, 0, -1, and -2. The measurement is based on a new method that can effectively eliminate the alias and numerical artifacts, and reliably extend the analysis into the strongly non-linear regime. The work makes use of a set of state-of-the art N-body simulations that have significantly increased the resolution range compared with the previous studies on the subject. With these measured results, we demonstrated that the measured bispectrum depends on the shape and size of kk-triangle even in the strongly nonlinear regime. It increases with wavenumber and decreases with the spectral index. These results are in contrast with the hypothesis that the reduced bispectrum is a constant in the strongly non-linear regime. We also show that the fitting formula of Scoccimarro & Frieman (1999) does not describe our simulation results well (with a typical error about 40 percent). In the end, we present a new fitting formula for the reduced bispectrum that is valid for 2n0-2 \leq n \leq 0 with a typical error of 10 percent only.Comment: 33 pages, including 1 table, 14 figures, accepted by Ap

    Extracting and Stabilizing the Unstable State of Hysteresis Loop

    Full text link
    A novel perturbation method for the stabilization of unstable intermediate states of hysteresis loop (i.e. S-shaped curve) is proposed. This method only needs output signals of the system to construct the perturbation form without delay-coordinate embedding technique, it is more practical for real-world systems. Stabilizing and tracking the unstable intermediate branch are demonstrated through the examples of a bistable laser system and delay feedback system. All the numerical results are obtained by simulating each of the real experimential conditions.Comment: 6 pages, REVTEX, 4 ps figure

    Self-similarity in a system with short-time delayed feedback

    Get PDF
    Using the Poincar\'{e} section technique, we study in detail the dynamical behaviors of delay differential system and find a new type of solutions SiS_i in short-time delay feedback. Our numerical results remind us to deny the opinion that there are no complex phenomena in short-time delay case. Many similarities between foundamental solution and the new type of solutions are found. We demonstrate that the scales of SiS_i increase with exponential growth via ii in the direction of μ\mu , while decrease with exponential decays in the direction of xx or delay time tRt_R.Comment: 4 pages, REVTEX, 4 ps figures, to be published in Phys. Lett.

    Kernel Regression For Determining Photometric Redshifts From Sloan Broadband Photometry

    Full text link
    We present a new approach, kernel regression, to determine photometric redshifts for 399,929 galaxies in the Fifth Data Release of the Sloan Digital Sky Survey (SDSS). In our case, kernel regression is a weighted average of spectral redshifts of the neighbors for a query point, where higher weights are associated with points that are closer to the query point. One important design decision when using kernel regression is the choice of the bandwidth. We apply 10-fold cross-validation to choose the optimal bandwidth, which is obtained as the cross-validation error approaches the minimum. The experiments show that the optimal bandwidth is different for diverse input patterns, the least rms error of photometric redshift estimation arrives at 0.019 using color+eClass as the inputs, the less rms error amounts to 0.020 using ugriz+eClass as the inputs. Here eClass is a galaxy spectra type. Then the little rms scatter is 0.021 with color+r as the inputs.Comment: 6 pages,2 figures, accepted for publication in MNRA

    Determination of f+K(0)f_+^K(0) and Extraction of Vcs|V_{cs}| from Semileptonic DD Decays

    Get PDF
    By globally analyzing all existing measured branching fractions and partial rates in different four momentum transfer-squared q2q^2 bins of DKe+νeD\to Ke^+\nu_e decays, we obtain the product of the form factor and magnitude of CKM matrix element VcsV_{cs} to be f+K(0)Vcs=0.717±0.004f_+^K(0)|V_{cs}|=0.717\pm0.004. With this product, we determine the DKD\to K semileptonic form factor f+K(0)=0.737±0.004±0.000f_+^K(0)=0.737\pm0.004\pm0.000 in conjunction with the value of Vcs|V_{cs}| determined from the SM global fit. Alternately, with the product together with the input of the form factor f+K(0)f_+^K(0) calculated in lattice QCD recently, we extract VcsDKe+νe=0.962±0.005±0.014|V_{cs}|^{D\to Ke^+\nu_e}=0.962\pm0.005\pm0.014, where the error is still dominated by the uncertainty of the form factor calculated in lattice QCD. Combining the VcsDs++ν=1.012±0.015±0.009|V_{cs}|^{D_s^+\to\ell^+\nu_\ell}=1.012\pm0.015\pm0.009 extracted from all existing measurements of Ds++νD^+_s\to\ell^+\nu_\ell decays and VcsDKe+νe=0.962±0.005±0.014|V_{cs}|^{D\to Ke^+\nu_e}=0.962\pm0.005\pm0.014 together, we find the most precisely determined Vcs|V_{cs}| to be Vcs=0.983±0.011|V_{cs}|=0.983\pm0.011, which improves the accuracy of the PDG'2014 value VcsPDG2014=0.986±0.016|V_{cs}|^{\rm PDG'2014}=0.986\pm0.016 by 45%45\%
    corecore