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Self-similarity in a system with a short-time delayed feedback
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Abstract

Using the Poincare section technique, we study in detail the dynamical behaviors of delay differential system and find a´
new type of solutions S in short-time delay feedback. Our numerical results remind us to deny the opinion that there are noi

complex phenomena in short-time delay case. Many similarities between the fundamental solution and the new type of
solutions are found. We demonstrate that the scales of S increase with exponential growth via i in the direction of m, whilei

decrease with exponential decays in the direction of x or delay time t . q 1999 Published by Elsevier Science B.V. AllR

rights reserved.

PACS: 05.45.qb; 42.55.Px

1. Introduction

Optical feedback systems governed by delay dif-
Ž .ferential Eqs. DDEs have attracted much attention

from both the applied and the fundamental points of
w xview 1–16 . Generally, the delay-differential system

related to optical bistable or hybrid optical bistable
device is described by

t
X x t syx t q f x ty t ,m , 1Ž . Ž . Ž . Ž .Ž .˙ R

Ž .where x t is the dimensionless output of the system
at time t, t is the time delay of the feedback loop,R

t
X is the response time of the nonlinear medium, the

parameter m is proportional to the intensity of the
Ž . Ž .incident light. In Eq. 1 , f x,m is a nonlinear

Ž .function of x, characterizing the system, e.g. f x,m
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w Ž .x w xs mp 1 y z cos x y x for Ikeda model 2 ,B
Ž . w 2Ž .xf x,m sp Aymsin xyx for Vallee model´0

w x Ž . 2Ž .3 , and f x,m smsin xyx for the sine-square0
w xmodel 4 .

Ž .The understanding of Eq. 1 up to now can be
summarized as follows. The first experimental obser-
vation of period-doubling bifurcations and chaos in a

w xhybrid bistable device was made by Gibbs et al. 1
w xfollowing a prediction by Ikeda et al. 2 . The solu-

tion of the system, which appears after Hopf bifurca-
tion, evolves through a period doubling T ™2TF F

PPP ™2 N T , as one parameter is varied. TheseF

solutions are called 2 N periodic and the cascade
accumulates at the Feigenbaum point. These solu-
tions are named fundamental solutions by Ikeda et

w xal. 2 , we do so in this paper. Later the two groups
found that higher- harmonic oscillation states appear
successively in the course of transition to developed

Žchaos in the long-time delayed case i.e. delay time
.is longer than the response time . These solutions
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coexist and each follows a period-doubling cascade.
The oscillation period of these harmonic states are
given by T rn, where n is the odd integer and T isF F

the period of the fundamental solution. As the study
of the dimension of the chaotic attractor, the behav-

w xior of the DDE exhibits high-dimensional chaos 5 .
Ikeda and Matsumoto have given an estimate of the
Lyapunov dimension of the attractor for the Ikeda
model, and it ranges approximately from 2 to 13
when some bifurcation parameter is varied. Recently,
some researchers demonstrated that the behavior of
quasiperiodicity followed the hierarchy of the Farey

w xtree 6–10 and the chaotic itinerancy phenomenon
switches among some different unstable local chaotic

w xorbits 11–13 . We reported two new types of solu-
tions found in moderate-time and short-time delay

w xregimes 15 , which are different from the fundamen-
tal solution and the odd harmonic solution. In this
paper, we study in detail the dynamical behaviors of
the new type of solution found in short-time delay
regimes.

This paper is organized as follows: In Section 2,
the numerical methods used in this paper are intro-
duced. By using the Poincare section technique, we´
can easily observe the course of bifurcation of DDE,
and easily distinguish the new type of solutions and
the fundamental solution. In Section 3, we demon-
strate our numerical results. In the short-time delay

Ž .case, there is a new type of solutions S is1,2,3 . . . ,i

which has many similarities compared to the funda-
mental solution. Moreover, these new solutions are
alike to each other. In Section 4 we summarize our
results and conclude.

2. Numerical methods

Measuring the delay time in units of t , one canR
Ž .rewrite Eq. 1 as

t x t syx t q f x ty1 ,m , 2Ž . Ž . Ž . Ž .Ž .˙

where tst
Xrt characterizes the effect of the timeR

delay when t
X is fixed. In this paper, we study Eq.

Ž .2 with the special feedback function

f x ,m s1ym x 2 . 3Ž . Ž .
This feedback function can be considered as the first
nonlinear term of the Taylor expansion of the gen-

Ž .eral nonlinear function f x,m in the vicinity of a
steady state. It should keep the general nonlinear

w xproperties of DDE, as shown in Refs. 14,15 .
Ž .Eq. 2 can be solved numerically and a fourth-

order Adam’s interpolation is suitable for that. In
order to trace the evolution of a DDE, one might

Ž .investigate the evolution curve of the variable x t
vs the time t. However, it is difficult to distinguish

Ž .different solutions if one only observes the x t y t
Ž .relation. Some of us Zhao et al. have offered a

w xmethod in Ref. 10 to represent the solutions of a
one-variable DDE by using the Poincare section´
technique. This method has been proved to be a
powerful tool in exploring the evolution of bifurca-
tion of DDE. Let us review this method briefly. Let
Ž . Ž . Ž .x u 'x tqu ,y1FuF0, then x u is deter-t t2

Ž . Ž .mined by x u uniquely according to Eq. 2 , wheret1

t - t . We approach the section mapping as follows:1 2

choose an appropriate constant x gR; integrate Eq.c
Ž . Ž . Ž .2 numerically till x t )x and x tqh -x ,c c

where h is the length of the integrating step; then
proceed a simulation procedure to get t as well asi
Ž . Ž .x u such that x 0 sx . To be simple, we denotet t ci i

Ž . Ž .x u as x u in the following discussions. In thist ii

Ž .way we convert the flow of Eq. 2 into a mapping
Ž . Ž .which maps the curve x u onto the curve x u .i iq1

We regard this curve-to-curve mapping as the
Poincare map of a DDE. A periodic solution of Eq.´
Ž . Ž . Ž .2 with period T , x t sx tqT , corresponds to a
periodic solution of the Poincare map with period N,´
Ž . Ž .x u sx u , where N is an integer. For practi-i iqN

Ž .cal applications, we can take n discrete points x ui j
Ž .on the curve x u to represent the solution, wherei

Ž .u g y1,0 and js1,2, . . . ,n. Then the curve-to-j

curve mapping appears as a point-to-point mapping
in Rn. In order to exhibit the bifurcation process,
here we usually need a one-dimensional mapping

Ž .representation x u with the bifurcation parameter.i 1

3. Results

As usually considered, there is no complex phe-
Ž .nomenon in the short-time delay region since Eq. 2

will approach a normal one-dimensional ordinary
differential equation. Our results remind us that this
is not the truth.
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3.1. The bifurcation of fundamental solution

Before discussing the new type of solutions, let us
first review the bifurcation process of the fundamen-

Žtal solution. In the long-time delay case i.e. t is
. w xvery small , Ikeda et al. 2 have shown theoretically

that instabilities and chaotic behavior can occur in
the system. As t is fixed and m is increased, a
square-wave solution appears after the Hopf bifurca-
tion of a steady state. With a further increase of m,
this square wave solution undergoes a square of
bifurcation with its period doubling itself succes-
sively and then becomes chaotic. We define this

solution as the fundamental solution of the system
and marked it as S .0

Ž .When t increases i.e. delay time decreases , the
fundamental solution exhibits mirror-similar bifurca-

Ž .tion behavior as shown in Fig. 1 a . With the contin-
uous increase of t , the period-doubling bifurcation
with less and less order takes place in the course of
bifurcation. At ts1.13, S undergoes only period-0

Ž .two bifurcation via m. Fig. 1 b shows a bifurcation
diagram just below this value. With a further in-
crease t , we can no longer observe the period-dou-

Ž . Ž .bling bifurcation of S , see Fig. 1 c – f . We regard0

the regime of t)1.13 as the short-time delay case.

Fig. 1. The bifurcation diagrams of S and S with the increase of t .0 i
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In this regime, the delay time t is smaller than theR

response time t
X because tst

Xrt , and the funda-R

mental solution exhibits only a one-period limit cy-
cle state.

3.2. New type of solutions

In the short-time delay case, fundamental solution
shows no bifurcation and chaos. This is not to say
that there is no chaos in this system with the varying
of m at a fixed parameter t . In fact, there still exists
another chaotic attractor, which locates behind S in0

Ž . Ž .the direction of m, as shown in Fig. 1 c – f . We
Ž .marked them as S is1,2,3, . . . . In the direction ofi

m, every S evolves a period-doubling bifurcation.i

Fig. 2 exhibits the evolution courses of fundamental
solution and S , which is located on period-one limiti

cycle state of themselves, respectively.
From Fig. 1 and Fig. 2, we can easily find that

there are not only similarities but also differences
among S and S . Firstly, with the increase of t ,0 i

each S appears the same bifurcation process as Si 0
Ž . Ž .does. Comparing Fig. 1 c with Fig. 1 a , we can

find that the diagram of S at ts3.0 displays the1

same shape as that of S at ts0.80. In fact, at0

certain parameter, S , S and S et al. also show the2 3 4

similar shape. Secondly, S has more and morei

oscillation with the increase of the subscript i. Si-
multaneously, i increases with the increase of t . S0

has only one peak within one period. In contrast to

Ž . Ž . Ž . Ž .Fig. 2. The evolution of S and S versus time. a S ,ts0.3,ms1.50; b S ,ts1.5,ms8.50; c S ,ts1.5,ms9.42; d S ,ts3.5,m0 i 0 1 2 3
Ž .s31.45; b S ,ts40,ms2585.4
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S , S has not only a peak but also another small0 1

peak; S ,S and S have more and more peaks2 3 4

within one period respectively, see Fig. 2. Thirdly,
with the increase of t , S appears one by one and Si 1

follows S , S follows S in the direction of m.0 2 1

3.3. The scales of S Õia ii

From Fig. 1 one can find that S appears continu-i

ously with the increase of t . In order to find the law
which exhibits the appearance order of S and thei

scales of S , we should choose a standard to comparei

S with each other. In this paper, we choose thei

critical values of t as the standard, t is the value ati i

which the second period-doubling bifurcation of the
period-1 solution of S takes place with the decreasei

of t . In fact one could also choose another standard.
For this specific choice, the bifurcation diagram of Si

Ž . Ž .appears as the patterns in Fig. 3 a – e respectively.
Our numerical solutions show that t increases withi

exponential growth against the increase of i. Fig.
Ž .4 a demonstrates the result, where the scatters are

the values of t and the dotted line is the fittingi

curve which is an exponential growth function with

Fig. 3. Bifurcation diagrams of S and S at the critical values of t .0 i i
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Ž . Ž . Ž . Ž . XFig. 4. a t , b t , c dm, and d d x of S versus i. Here t is as same as Fig. 3 and t st rt . dm is the length and d x is thei R i i R

maximum height of period-2 solution in Fig. 3 respectively. The square scatter is the numerical result and the dotted line is the fitting
Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .curves. a t s2.026exp ir0.817 ; b t i s1.135exp yir0.747 ; c dm i s1.072exp ir0.616 ; d d x i s0.125exp yir0.458 .i R

Ž .the increase of i as follows: t sAexp irB , wherei

A and B are fitting coefficients.
From Fig. 1 one can find that the scale of the

bifurcation diagrams of S along m increases, whilei

along x it decreases with the increase of i. Using the
standard chosen above, we can measure the length
dm of the period-2 solution in the direction of m at
t and use it to characterize the scale of S along m.i k

Ž .Fig. 4 c shows that dm also increases with exponen-
tial growth via i, and the exponential function is

Ž .dm i sAexp irB . On the other hand, by measur-Ž .
ing the maximum height d x of the period-2 solution
at t , we find that d x exhibits the exponential decayi

Ž . Ž .with the increase of i: d x i sAexp yirB , see
Ž .Fig. 4 d .

4. Conclusion

In this paper we have studied in detail the dynam-
ics of a short-time delay differential system. Our
numerical result remind us that it is not correct to
assume that there is no complex behavior in short-

time delay feedback. By using the Poincare section´
w xtechnique in DDE 10 , a new type of solutions Si

was found in this case and it has many similarities
with the fundamental solutions in the bifurcation
diagrams. We found the law of S and showed thei

scales of S with the increase of i. The scales of Si i

increases along m and t , while it decreases along x
and delay time.
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