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Abstract

Using the Poincaré section technique, we study in detail the dynamical behaviors of delay differential system and find a
new type of solutions § in short-time delay feedback. Our numerical results remind us to deny the opinion that there are no
complex phenomena in short-time delay case. Many similarities between the fundamental solution and the new type of
solutions are found. We demonstrate that the scales of § increase with exponential growth via i in the direction of w, while
decrease with exponential decays in the direction of x or delay time tg. © 1999 Published by Elsevier Science B.V. All

rights reserved.

PACS 05.45.+ b; 42.55.Px

1. Introduction

Optical feedback systems governed by delay dif-
ferential Eqs. (DDES) have attracted much attention
from both the applied and the fundamental points of
view [1-16]. Generally, the delay-differential system
related to optical bistable or hybrid optical bistable
device is described by

T'X(t) = —x(t) +f(x(t—tg),m), (1)
where x(t) is the dimensionless output of the system
at time t, t is the time delay of the feedback loop,
7' is the response time of the nonlinear medium, the
parameter w is proportional to the intensity of the
incident light. In Eq. (1), f(x,u) is a nonlinear
function of x, characterizing the system, e.g. f(x,u)

! E-mail: address: chaosun@lzu.edu.cn

2 E-mail: address: zhaoh@Il zu.edu.cn

# Author to whom correspondence should be addressed. E-mail:
wangyh@lzu.edu.cn

= pm[l — {cos(x — xg)] for lkeda model [2],
f(x,u) = w[ A— psin’(x—x,)] for Valée model
[3], and f(x,u) = usin®(x — X,) for the sine-square
model [4].

The understanding of Eq. (1) up to now can be
summarized as follows. The first experimental obser-
vation of period-doubling bifurcations and chaos in a
hybrid bistable device was made by Gibbs et al. [1]
following a prediction by lkeda et a. [2]. The solu-
tion of the system, which appears after Hopf bifurca-
tion, evolves through a period doubling Tz — 2T;

- > 2NT., as one parameter is varied. These
solutions are called 2N periodic and the cascade
accumulates at the Feigenbaum point. These solu-
tions are named fundamental solutions by Ikeda et
al. [2], we do so in this paper. Later the two groups
found that higher- harmonic oscillation states appear
successively in the course of transition to developed
chaos in the long-time delayed case (i.e. delay time
is longer than the response time). These solutions
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coexist and each follows a period-doubling cascade.
The oscillation period of these harmonic states are
given by T-/n, where n is the odd integer and T is
the period of the fundamental solution. As the study
of the dimension of the chaotic attractor, the behav-
ior of the DDE exhibits high-dimensional chaos [5].
Ikeda and Matsumoto have given an estimate of the
Lyapunov dimension of the attractor for the Ikeda
model, and it ranges approximately from 2 to 13
when some bifurcation parameter is varied. Recently,
some researchers demonstrated that the behavior of
quasiperiodicity followed the hierarchy of the Farey
tree [6-10] and the chaotic itinerancy phenomenon
switches among some different unstable local chaotic
orbits [11-13]. We reported two new types of solu-
tions found in moderate-time and short-time delay
regimes[15], which are different from the fundamen-
tal solution and the odd harmonic solution. In this
paper, we study in detail the dynamical behaviors of
the new type of solution found in short-time delay
regimes.

This paper is organized as follows: In Section 2,
the numerical methods used in this paper are intro-
duced. By using the Poincaré section technique, we
can easily observe the course of bifurcation of DDE,
and easily distinguish the new type of solutions and
the fundamental solution. In Section 3, we demon-
strate our numerical results. In the short-time delay
case, thereisanew type of solutions S(i = 1,2,3...),
which has many similarities compared to the funda-
mental solution. Moreover, these new solutions are
alike to each other. In Section 4 we summarize our
results and conclude.

2. Numerical methods

Mesasuring the delay time in units of tg, one can
rewrite Eq. (1) as
X(t) = —=x(t) +f(x(t—=1),u), (2)
where 7= 7' /ty characterizes the effect of the time
delay when 7' is fixed. In this paper, we study Eq.
(2) with the special feedback function
f(x,m) =1- px?. (3)
This feedback function can be considered as the first
nonlinear term of the Taylor expansion of the gen-

eral nonlinear function f(x,u) in the vicinity of a
steady state. It should keep the general nonlinear
properties of DDE, as shown in Refs. [14,15].

Eqg. (2) can be solved numericaly and a fourth-
order Adam'’s interpolation is suitable for that. In
order to trace the evolution of a DDE, one might
investigate the evolution curve of the variable x(t)
vs the time t. However, it is difficult to distinguish
different solutions if one only observes the x(t) —t
relation. Some of us (Zhao et a.) have offered a
method in Ref. [10] to represent the solutions of a
one-variable DDE by using the Poincaré section
technique. This method has been proved to be a
powerful tool in exploring the evolution of bifurca
tion of DDE. Let us review this method briefly. Let
x(0)=x(t+6),—1<60<0, then x,(6) is deter-
mined by x,(6) uniquely according to Eq. (2), where
t, <t,. We approach the section mapping as follows:
choose an appropriate constant x, € R; integrate Eq.
(2) numericaly till x(t)>x, and x(t+h) <x,
where h is the length of the integrating step; then
proceed a simulation procedure to get t; as well as
x,(6) such that x,(0) = x;. To be smple, we denote
x,(8) as x;(#) in the following discussions. In this
way we convert the flow of Eg. (2) into a mapping
which maps the curve x;(#) onto the curve x;, (6).
We regard this curve-to-curve mapping as the
Poincaré map of a DDE. A periodic solution of Eq.
(2) with period T, x(t) =x(t+ T), corresponds to a
periodic solution of the Poincare map with period N,
x(0) =X, y(0), where N is an integer. For practi-
cal applications, we can take n discrete points x;(6,)
on the curve x;(#) to represent the solution, where
6,€(=10) and j=1.2,...,n. Then the curve-to-
curve mapping appears as a point-to-point mapping
in R". In order to exhibit the bifurcation process,
here we usually need a one-dimensional mapping
representation x;(6,) with the bifurcation parameter.

3. Results

As usualy considered, there is no complex phe-
nomenon in the short-time delay region since Eqg. (2)
will approach a normal one-dimensiona ordinary
differential equation. Our results remind us that this
is not the truth.
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3.1. The bifurcation of fundamental solution

Before discussing the new type of solutions, let us
first review the bifurcation process of the fundamen-
tal solution. In the long-time delay case (i.e. 7 is
very small), Ikeda et a. [2] have shown theoretically
that instabilities and chaotic behavior can occur in
the system. As 7 is fixed and w is increased, a
sguare-wave solution appears after the Hopf bifurca
tion of a steady state. With a further increase of wu,
this sguare wave solution undergoes a square of
bifurcation with its period doubling itself succes-
sively and then becomes chaotic. We define this
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solution as the fundamental solution of the system
and marked it as .

When 7 increases (i.e. delay time decreases), the
fundamental solution exhibits mirror-similar bifurca-
tion behavior as shown in Fig. 1(a). With the contin-
uous increase of 7, the period-doubling bifurcation
with less and less order takes place in the course of
bifurcation. At 7= 1.13, S undergoes only period-
two bifurcation via w. Fig. 1(b) shows a bifurcation
diagram just below this value. With a further in-
crease 7, we can no longer observe the period-dou-
bling bifurcation of S,, see Fig. 1(c)—(f). We regard
the regime of 7> 1.13 as the short-time delay case.
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Fig. 1. The bifurcation diagrams of §, and § with the increase of 7.
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In this regime, the delay time tg is smaller than the
response time 7' because 7= 7'/tg, and the funda-
mental solution exhibits only a one-period limit cy-
cle state.

3.2. New type of solutions

In the short-time delay case, fundamental solution
shows no hifurcation and chaos. This is not to say
that there is no chaos in this system with the varying
of u at afixed parameter 7. In fact, there till exists
another chaotic attractor, which locates behind §) in
the direction of u, as shown in Fig. 1(c)—(f). We
marked them as S§(i = 1,2,3,...). In the direction of
n, every § evolves a period-doubling bifurcation.

Fig. 2 exhibits the evolution courses of fundamental
solution and §, which is located on period-one limit
cycle state of themselves, respectively.

From Fig. 1 and Fig. 2, we can easily find that
there are not only similarities but also differences
among & and S. Firstly, with the increase of 7,
each § appears the same hifurcation process as S,
does. Comparing Fig. 1(c) with Fig. 1(a), we can
find that the diagram of S at 7= 3.0 displays the
same shape as that of §, a 7=0.80. In fact, at
certain parameter, S,, S; and S, et a. aso show the
similar shape. Secondly, § has more and more
oscillation with the increase of the subscript i. Si-
multaneoudly, i increases with the increase of . §
has only one peak within one period. In contrast to
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Fig. 2. The evolution of §, and § versustime. (@) §,7= 0.3, = 1.50; (b) S;,7= 1.5, = 8.50; (©) S, 7= 1.5, = 9.42; (d) S;,7= 35,

= 31.45; (b) S,,7= 40,1 = 2585.
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S, S, has not only a peak but also another small
pesk; S,,S; and S, have more and more peaks
within one period respectively, see Fig. 2. Thirdly,
with the increase of 7, S appears one by one and S
follows S, S, follows S, in the direction of p.

3.3. The scales of § viai

From Fig. 1 one can find that S appears continu-
oudly with the increase of 7. In order to find the law
which exhibits the appearance order of § and the
scales of §, we should choose a standard to compare

L. Yaowen et al. / Physics Letters A 256 (1999) 166—172

S with each other. In this paper, we choose the
critical values of r; asthe standard, 7; isthe value at
which the second period-doubling bifurcation of the
period-1 solution of § takes place with the decrease
of 7. In fact one could also choose another standard.
For this specific choice, the bifurcation diagram of S
appears as the patterns in Fig. 3(a)—(e) respectively.
Our numerical solutions show that =, increases with
exponential growth against the increase of i. Fig.
4(a) demonstrates the result, where the scatters are
the values of 7, and the dotted line is the fitting
curve which is an exponential growth function with
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Fig. 3. Bifurcation diagrams of S, and § at the critical values of ;.
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the increase of i as follows: 7, = Aexp(i/B), where
A and B are fitting coefficients.

From Fig. 1 one can find that the scale of the
bifurcation diagrams of § aong w increases, while
along x it decreases with the increase of i. Using the
standard chosen above, we can measure the length
S of the period-2 solution in the direction of w at
7; and use it to characterize the scale of S aong w.
Fig. 4(c) showsthat du also increases with exponen-
tia growth via i, and the exponential function is
du(i) = Aexp(i/B). On the other hand, by measur-
ing the maximum height 6x of the period-2 solution
at 7;, we find that 6x exhibits the exponential decay
with the increase of i: 8x(i) = Aexp(—i/B), see
Fig. 4(d).

4. Conclusion

In this paper we have studied in detail the dynam-
ics of a short-time delay differential system. Our
numerical result remind us that it is not correct to
assume that there is no complex behavior in short-

time delay feedback. By using the Poincaré section
technique in DDE [10], a new type of solutions S
was found in this case and it has many similarities
with the fundamental solutions in the bifurcation
diagrams. We found the law of § and showed the
scales of § with the increase of i. The scales of §
increases along w and 7, while it decreases along x
and delay time.
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