863 research outputs found
Franck-Condon Effect in Central Spin System
We study the quantum transitions of a central spin surrounded by a
collective-spin environment. It is found that the influence of the
environmental spins on the absorption spectrum of the central spin can be
explained with the analog of the Franck-Condon (FC) effect in conventional
electron-phonon interaction system. Here, the collective spins of the
environment behave as the vibrational mode, which makes the electron to be
transitioned mainly with the so-called "vertical transitions" in the
conventional FC effect. The "vertical transition" for the central spin in the
spin environment manifests as, the certain collective spin states of the
environment is favored, which corresponds to the minimal change in the average
of the total spin angular momentum.Comment: 8 pages, 8 figure
Studies of Prototype CsI(Tl) Crystal Scintillators for Low-Energy Neutrino Experiments
Crystal scintillators provide potential merits for the pursuit of low-energy
low-background experiments. A CsI(Tl) scintillating crystal detector is being
constructed to study low-energy neutrino physics at a nuclear reactor, while
projects are underway to adopt this technique for dark matter searches. The
choice of the geometrical parameters of the crystal modules, as well as the
optimization of the read-out scheme, are the results of an R&D program.
Crystals with 40 cm in length were developed. The detector requirements and the
achieved performance of the prototypes are presented. Future prospects for this
technique are discussed.Comment: 32 pages, 14 figure
Theoretical study of the two-proton halo candidate Ne including contributions from resonant continuum and pairing correlations
With the relativistic Coulomb wave function boundary condition, the energies,
widths and wave functions of the single proton resonant orbitals for Ne
are studied by the analytical continuation of the coupling constant (ACCC)
approach within the framework of the relativistic mean field (RMF) theory.
Pairing correlations and contributions from the single-particle resonant
orbitals in the continuum are taken into consideration by the resonant
Bardeen-Cooper-Schrieffer (BCS) approach, in which constant pairing strength is
used. It can be seen that the fully self-consistent calculations with NL3 and
NLSH effective interactions mostly agree with the latest experimental
measurements, such as binding energies, matter radii, charge radii and
densities. The energy of 2s orbital is slightly higher than that
of orbital, and the occupation probability of the
2s orbital is about 20%, which are in accordance with the
shell model calculation and three-body model estimation
Influence of the starting composition on the structural and superconducting properties of MgB2 phase
We report the preparation of MgB (0x0.5) compounds
with the nominal compositions. Single phase MgB was obtained for x=0
sample. For 0x0.5, MgB coexists with "MgB" and the amount
of MgB increases with x. With the increase of x, the lattice parameter
of "MgB" increases and the lattice parameter
decreases, correspondingly T of MgB decreases. The results
were discussed in terms of the presence of Mg vacancies or B interstitials in
the MgB structure. This work is helpful to the understanding of the
MgB films with different T, as well as the Mg site doping effect
for MgB.Comment: 11 pages, 4 figure
A novel determination of the local dark matter density
We present a novel study on the problem of constructing mass models for the
Milky Way, concentrating on features regarding the dark matter halo component.
We have considered a variegated sample of dynamical observables for the Galaxy,
including several results which have appeared recently, and studied a 7- or
8-dimensional parameter space - defining the Galaxy model - by implementing a
Bayesian approach to the parameter estimation based on a Markov Chain Monte
Carlo method. The main result of this analysis is a novel determination of the
local dark matter halo density which, assuming spherical symmetry and either an
Einasto or an NFW density profile is found to be around 0.39 GeV cm with
a 1- error bar of about 7%; more precisely we find a for the Einasto profile and for the NFW. This is in contrast to the
standard assumption that is about 0.3 GeV cm with an
uncertainty of a factor of 2 to 3. A very precise determination of the local
halo density is very important for interpreting direct dark matter detection
experiments. Indeed the results we produced, together with the recent accurate
determination of the local circular velocity, should be very useful to
considerably narrow astrophysical uncertainties on direct dark matter
detection.Comment: 31 pages,11 figures; minor changes in the text; two figures adde
Fermat-linked relations for the Boubaker polynomial sequences via Riordan matrices analysis
The Boubaker polynomials are investigated in this paper. Using Riordan
matrices analysis, a sequence of relations outlining the relations with
Chebyshev and Fermat polynomials have been obtained. The obtained expressions
are a meaningful supply to recent applied physics studies using the Boubaker
polynomials expansion scheme (BPES).Comment: 12 pages, LaTe
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters
We present a nucleon resonance analysis by simultaneously considering all
pion- and photon-induced experimental data on the final states gamma N, pi N, 2
pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass
up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the
resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The
omega N production mechanism is dominated by large P_{11}(1710) and
P_{13}(1900) contributions. In this first part, we present the results of the
pion-induced reactions and the extracted resonance and background properties
with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected,
references updated, to appear in Phys. Rev.
- …