1,278 research outputs found

    Double magic nuclei for Z>82 and N>126

    Get PDF

    Finite Element Analysis of the Displacement Adjustment Scheme for Column Bases of a 10000 m3 Spherical Tank During Whole-body Heat Treatment

    Get PDF
    AbstractThe stress of spherical tank and displacement of column bases were calculated by finite element method, considering the uneven gravity loads on support columns which was caused by manufacturing and setting errors. The preliminary displacement adjustment scheme for column bases was made, according to the safety range of column bases displacement which was determined by the maximum stress restricted by allowable stress at the set heat treatment temperatures. The final scheme was made after checking the preliminary scheme. The method of making adjustment scheme of column bases for a 10000m3 spherical tank during the whole-body heat treatment may provide a reference for other large spherical tank

    Numerical Simulation of the Thermomechanical Behavior of a Hot Stamping Die

    No full text
    For studying the temperature field of hot stamping, the effect of the distance between cooling pipes, the distance between the cooling pipe and mold surface, and the water cooling pipe diameter were evaluated with ANSYS software. The results showed that the maximum temperature was about 50°C, and the maximum temperature difference of hot stamping was less than 35°C. The maximum temperature and the uniformity of stamping temperature can be improved by controlling the size and spacing of cooling pipes.Определен эффект расстояния между трубами охлаждения, расстояния между трубой охлаждения и поверхностью формы и диаметра трубы водяного охлаждения на температурное поле горячей штамповки с использованием программного обеспечения ANSYS. Показано, что максимальная температура составляет примерно 50°С, а максимальный перепад температуры горячей штамповки менее 35°С. Регулирование размеров и расстояния между трубами охлаждения позволяет увеличить максимальную температуру и равномерность распределения температуры штамповки

    Comparison of 35 and 50 {\mu}m thin HPK UFSD after neutron irradiation up to 6*10^15 neq/cm^2

    Full text link
    We report results from the testing of 35 {\mu}m thick Ultra-Fast Silicon Detectors (UFSD produced by Hamamatsu Photonics (HPK), Japan and the comparison of these new results to data reported before on 50 {\mu}m thick UFSD produced by HPK. The 35 {\mu}m thick sensors were irradiated with neutrons to fluences of 0, 1*10^14, 1*10^15, 3*10^15, 6*10^15 neq/cm^2. The sensors were tested pre-irradiation and post-irradiation with minimum ionizing particles (MIPs) from a 90Sr \b{eta}-source. The leakage current, capacitance, internal gain and the timing resolution were measured as a function of bias voltage at -20C and -27C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both. Within the fluence range measured, the advantage of the 35 {\mu}m thick UFSD in timing accuracy, bias voltage and power can be established.Comment: 9 pages, 9 figures, HSTD11 Okinawa. arXiv admin note: text overlap with arXiv:1707.0496

    Extending PT symmetry from Heisenberg algebra to E2 algebra

    Full text link
    The E2 algebra has three elements, J, u, and v, which satisfy the commutation relations [u,J]=iv, [v,J]=-iu, [u,v]=0. We can construct the Hamiltonian H=J^2+gu, where g is a real parameter, from these elements. This Hamiltonian is Hermitian and consequently it has real eigenvalues. However, we can also construct the PT-symmetric and non-Hermitian Hamiltonian H=J^2+igu, where again g is real. As in the case of PT-symmetric Hamiltonians constructed from the elements x and p of the Heisenberg algebra, there are two regions in parameter space for this PT-symmetric Hamiltonian, a region of unbroken PT symmetry in which all the eigenvalues are real and a region of broken PT symmetry in which some of the eigenvalues are complex. The two regions are separated by a critical value of g.Comment: 8 pages, 7 figure

    Convergence of energy-dependent incommensurate antiferromagnetic neutron scattering peaks to commensurate resonance in underdoped bilayer cuprates

    Full text link
    The recently discovered coexistence of incommensurate antiferromagnetic neutron scattering peaks and commensurate resonance in underdoped YBa2_2Cu3_3O6+x_{6+x} is calling for an explanation. Within the t-J model, the doping and energy dependence of the spin dynamics of the underdoped bilayer cuprates in the normal state is studied based on the fermion-spin theory by considering the bilayer interactions. Incommensurate peaks are found at [(1±δ)π,π][(1\pm\delta)\pi,\pi] and [π,(1±δ)π][\pi,(1\pm\delta)\pi] at low energies with δ\delta initially increasing with doping at low dopings and then saturating at higher dopings. These incommensurate peaks are suppressed, and the parameter δ\delta is reduced with increasing energy. Eventually it converges to the [π,π][\pi,\pi] resonance peak. Thus the recently observed coexistence is interpreted in terms of bilayer interactions.Comment: 15 pages, Revtex, five figures are included, accepted for publication in Phys. Rev.

    Non-Markovian dynamics in a spin star system: The failure of thermalization

    Full text link
    In most cases, a small system weakly interacting with a thermal bath will finally reach the thermal state with the temperature of the bath. We show that this intuitive picture is not always true by a spin star model where non-Markov effect predominates in the whole dynamical process. The spin star system consists a central spin homogeneously interacting with an ensemble of identical noninteracting spins. We find that the correlation time of the bath is infinite, which implies that the bath has a perfect memory, and that the dynamical evolution of the central spin must be non- Markovian. A direct consequence is that the final state of the central spin is not the thermal state equilibrium with the bath, but a steady state which depends on its initial state.Comment: 8 page

    Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta

    Full text link
    Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector, the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and (7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure

    Direct Measurements of the Branching Fractions for D0Ke+νeD^0 \to K^-e^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e and Determinations of the Form Factors f+K(0)f_{+}^{K}(0) and f+π(0)f^{\pi}_{+}(0)

    Get PDF
    The absolute branching fractions for the decays D0Ke+νeD^0 \to K^-e ^+\nu_e and D0πe+νeD^0 \to \pi^-e^+\nu_e are determined using 7584±198±3417584\pm 198 \pm 341 singly tagged Dˉ0\bar D^0 sample from the data collected around 3.773 GeV with the BES-II detector at the BEPC. In the system recoiling against the singly tagged Dˉ0\bar D^0 meson, 104.0±10.9104.0\pm 10.9 events for D0Ke+νeD^0 \to K^-e ^+\nu_e and 9.0±3.69.0 \pm 3.6 events for D0πe+νeD^0 \to \pi^-e^+\nu_e decays are observed. Those yield the absolute branching fractions to be BF(D0Ke+νe)=(3.82±0.40±0.27)BF(D^0 \to K^-e^+\nu_e)=(3.82 \pm 0.40\pm 0.27)% and BF(D0πe+νe)=(0.33±0.13±0.03)BF(D^0 \to \pi^-e^+\nu_e)=(0.33 \pm 0.13\pm 0.03)%. The vector form factors are determined to be f+K(0)=0.78±0.04±0.03|f^K_+(0)| = 0.78 \pm 0.04 \pm 0.03 and f+π(0)=0.73±0.14±0.06|f^{\pi}_+(0)| = 0.73 \pm 0.14 \pm 0.06. The ratio of the two form factors is measured to be f+π(0)/f+K(0)=0.93±0.19±0.07|f^{\pi}_+(0)/f^K_+(0)|= 0.93 \pm 0.19 \pm 0.07.Comment: 6 pages, 5 figure

    BESII Detector Simulation

    Full text link
    A Monte Carlo program based on Geant3 has been developed for BESII detector simulation. The organization of the program is outlined, and the digitization procedure for simulating the response of various sub-detectors is described. Comparisons with data show that the performance of the program is generally satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
    corecore