The E2 algebra has three elements, J, u, and v, which satisfy the commutation
relations [u,J]=iv, [v,J]=-iu, [u,v]=0. We can construct the Hamiltonian
H=J^2+gu, where g is a real parameter, from these elements. This Hamiltonian is
Hermitian and consequently it has real eigenvalues. However, we can also
construct the PT-symmetric and non-Hermitian Hamiltonian H=J^2+igu, where again
g is real. As in the case of PT-symmetric Hamiltonians constructed from the
elements x and p of the Heisenberg algebra, there are two regions in parameter
space for this PT-symmetric Hamiltonian, a region of unbroken PT symmetry in
which all the eigenvalues are real and a region of broken PT symmetry in which
some of the eigenvalues are complex. The two regions are separated by a
critical value of g.Comment: 8 pages, 7 figure