153,802 research outputs found

    Spatial Aggregation: Theory and Applications

    Full text link
    Visual thinking plays an important role in scientific reasoning. Based on the research in automating diverse reasoning tasks about dynamical systems, nonlinear controllers, kinematic mechanisms, and fluid motion, we have identified a style of visual thinking, imagistic reasoning. Imagistic reasoning organizes computations around image-like, analogue representations so that perceptual and symbolic operations can be brought to bear to infer structure and behavior. Programs incorporating imagistic reasoning have been shown to perform at an expert level in domains that defy current analytic or numerical methods. We have developed a computational paradigm, spatial aggregation, to unify the description of a class of imagistic problem solvers. A program written in this paradigm has the following properties. It takes a continuous field and optional objective functions as input, and produces high-level descriptions of structure, behavior, or control actions. It computes a multi-layer of intermediate representations, called spatial aggregates, by forming equivalence classes and adjacency relations. It employs a small set of generic operators such as aggregation, classification, and localization to perform bidirectional mapping between the information-rich field and successively more abstract spatial aggregates. It uses a data structure, the neighborhood graph, as a common interface to modularize computations. To illustrate our theory, we describe the computational structure of three implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the spatial aggregation generic operators by mixing and matching a library of commonly used routines.Comment: See http://www.jair.org/ for any accompanying file

    Production of oxygen from lunar ilmenite

    Get PDF
    The overall objective of this project was to develop a novel carbothermal reduction process for production of oxygen from lunar ilmenite. The specific objective was to use a reaction sequence in which a wide variety of carbonaceous compounds (including carbonaceous wastes) can be used as reducing agents. During the first phase, two reactor systems were designed, constructed, and operated to study the reaction fundamental important in this process. One system is a small fluidized bed, and the other is a thermo-gravimetric reactor system. Preliminary experiments on synthetic ilmenite are conducted to study the effect of carbon type, carbon loading, temperature, and gas flow rate. Results indicate that a reaction path based on carbon gasification can be used to promote the overall kinetics. A unique temperature and concentration-programmed reaction procedure was being developed for rapid parametric study of the process

    Coherent Graphene Devices: Movable Mirrors, Buffers and Memories

    Full text link
    We theoretically report that, at a sharp electrostatic step potential in graphene, massless Dirac fermions can obtain Goos-H\"{a}nchen-like shifts under total internal reflection. Based on these results, we study the coherent propagation of the quasiparticles along a sharp graphene \emph{p-n-p} waveguide and derive novel dispersion relations for the guided modes. Consequently, coherent graphene devices (e.g. movable mirrors, buffers and memories) induced only by the electric field effect can be proposed.Comment: 12 pages, 5 figure

    Excitations in correlated superfluids near a continuous transition into a supersolid

    Full text link
    We study a superfluid on a lattice close to a transition into a supersolid phase and show that a uniform superflow in the homogeneous superfluid can drive the roton gap to zero. This leads to supersolid order around the vortex core in the superfluid, with the size of the modulated pattern around the core being related to the bulk superfluid density and roton gap. We also study the electronic tunneling density of states for a uniform superconductor near a phase transition into a supersolid phase. Implications are considered for strongly correlated superconductors.Comment: 4 pages, 2 figures, published versio

    Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals

    Get PDF
    Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of <1–7.1%<1–7.1% of the monitored region compared to 2.7% for the AIC method and a range of 1.8–9.4% for the conventional Fixed Threshold method at different threshold levels
    corecore