153,802 research outputs found
Spatial Aggregation: Theory and Applications
Visual thinking plays an important role in scientific reasoning. Based on the
research in automating diverse reasoning tasks about dynamical systems,
nonlinear controllers, kinematic mechanisms, and fluid motion, we have
identified a style of visual thinking, imagistic reasoning. Imagistic reasoning
organizes computations around image-like, analogue representations so that
perceptual and symbolic operations can be brought to bear to infer structure
and behavior. Programs incorporating imagistic reasoning have been shown to
perform at an expert level in domains that defy current analytic or numerical
methods. We have developed a computational paradigm, spatial aggregation, to
unify the description of a class of imagistic problem solvers. A program
written in this paradigm has the following properties. It takes a continuous
field and optional objective functions as input, and produces high-level
descriptions of structure, behavior, or control actions. It computes a
multi-layer of intermediate representations, called spatial aggregates, by
forming equivalence classes and adjacency relations. It employs a small set of
generic operators such as aggregation, classification, and localization to
perform bidirectional mapping between the information-rich field and
successively more abstract spatial aggregates. It uses a data structure, the
neighborhood graph, as a common interface to modularize computations. To
illustrate our theory, we describe the computational structure of three
implemented problem solvers -- KAM, MAPS, and HIPAIR --- in terms of the
spatial aggregation generic operators by mixing and matching a library of
commonly used routines.Comment: See http://www.jair.org/ for any accompanying file
Production of oxygen from lunar ilmenite
The overall objective of this project was to develop a novel carbothermal reduction process for production of oxygen from lunar ilmenite. The specific objective was to use a reaction sequence in which a wide variety of carbonaceous compounds (including carbonaceous wastes) can be used as reducing agents. During the first phase, two reactor systems were designed, constructed, and operated to study the reaction fundamental important in this process. One system is a small fluidized bed, and the other is a thermo-gravimetric reactor system. Preliminary experiments on synthetic ilmenite are conducted to study the effect of carbon type, carbon loading, temperature, and gas flow rate. Results indicate that a reaction path based on carbon gasification can be used to promote the overall kinetics. A unique temperature and concentration-programmed reaction procedure was being developed for rapid parametric study of the process
Coherent Graphene Devices: Movable Mirrors, Buffers and Memories
We theoretically report that, at a sharp electrostatic step potential in
graphene, massless Dirac fermions can obtain Goos-H\"{a}nchen-like shifts under
total internal reflection. Based on these results, we study the coherent
propagation of the quasiparticles along a sharp graphene \emph{p-n-p} waveguide
and derive novel dispersion relations for the guided modes. Consequently,
coherent graphene devices (e.g. movable mirrors, buffers and memories) induced
only by the electric field effect can be proposed.Comment: 12 pages, 5 figure
Excitations in correlated superfluids near a continuous transition into a supersolid
We study a superfluid on a lattice close to a transition into a supersolid
phase and show that a uniform superflow in the homogeneous superfluid can drive
the roton gap to zero. This leads to supersolid order around the vortex core in
the superfluid, with the size of the modulated pattern around the core being
related to the bulk superfluid density and roton gap. We also study the
electronic tunneling density of states for a uniform superconductor near a
phase transition into a supersolid phase. Implications are considered for
strongly correlated superconductors.Comment: 4 pages, 2 figures, published versio
Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals
Acoustic Emission (AE) monitoring can be used to detect the presence of damage as well as determine its location in Structural Health Monitoring (SHM) applications. Information on the time difference of the signal generated by the damage event arriving at different sensors in an array is essential in performing localisation. Currently, this is determined using a fixed threshold which is particularly prone to errors when not set to optimal values. This paper presents three new methods for determining the onset of AE signals without the need for a predetermined threshold. The performance of the techniques is evaluated using AE signals generated during fatigue crack growth and compared to the established Akaike Information Criterion (AIC) and fixed threshold methods. It was found that the 1D location accuracy of the new methods was within the range of <1–7.1%<1–7.1% of the monitored region compared to 2.7% for the AIC method and a range of 1.8–9.4% for the conventional Fixed Threshold method at different threshold levels
Recommended from our members
Knots, links, anyons and statistical mechanics of entangled polymer rings
The field theory approach to the statistical mechanics of a system of N polymer rings linked together is extended to the case of links whose paths in space are characterized by a fixed number 2s of maxima and minima. Such kind of links are called 2s-plats and appear for instance in the DNA of living organisms or in the wordlines of quasiparticles associated with vortices nucleated in a quasi-two-dimensional superfluid. The path integral theory describing the statistical mechanics of polymers subjected to topological constraints is mapped here into a field theory of quasiparticles (anyons). In the particular case of s=2, it is shown that this field theory admits vortex solutions with special self-dual points in which the interactions between the vortices vanish identically. The topological states of the link are distinguished using two topological invariants, namely the Gauss linking number and the so-called bridge number which is related to s. The Gauss linking number is a topological invariant that is relatively weak in distinguishing the different topological configurations of a general link. The addition of topological constraints based on the bridge number allows to get a glimpse into the non-abelian world of quasiparticles, which is relevant for important applications like topological quantum computing and high-TC superconductivity. At the end an useful connection with the cosh-Gordon equation is shown in the case s=2. © 201
- …
