66,392 research outputs found

    BES Recent Results and Future Plans

    Get PDF
    We report the preliminary R values for all the 85 energy points scanned in the energy region of 2-5 GeV with the upgraded Beijing Spectrometer (BESII) at Beijing Electron Positron Collider (BEPC). Preliminary results from the J/psi data collected with both BESI and BESII are presented. Measurements of the branching fraction of the psi(2S) decays and the psi(2S) resonance parameters are reported. The future plans, i.e. significantly upgrade the machine and detector are also discussed.Comment: Talk given at APPAC2000, 6 pages, 8 figure

    Recent BES measurements and the hadronic contribution to the QED vacuum polarization

    Full text link
    We have updated our evaluation of the hadronic contribution to the running of the QED fine structure constant using the recent precise measurements of the e+e- annihilation at the center-of-mass (c.m.s.) energy region between 2.6 and 3.65 GeV performed by the BES collaboration. In the low energy region, around the rho resonance, we include the recent measurements from the BABAR, CDM-2, KLOE and SND collaborations. We obtain Delta alpha (5)_had (s) = 0.02750 +/- 0.00033 at s = m_Z^2.Comment: 3 pages, 1 figur

    Analytical considerations of flow boiling heat transfer in metal-foam filled tubes

    Get PDF
    Flow boiling in metal-foam filled tube was analytically investigated based on a modified microstructure model, an original boiling heat transfer model and fin analysis for metal foams. Microstructure model of metal foams was established, by which fiber diameter and surface area density were precisely predicted. The heat transfer model for flow boiling in metal foams was based on annular pattern, in which two phase fluid was composed by vapor region in the center of the tube and liquid region near the wall. However, it was assumed that nucleate boiling performed only in the liquid region. Fin analysis and heat transfer network for metal foams were integrated to obtain the convective heat transfer coefficient at interface. The analytical solution was verified by its good agreement with experimental data. The parametric study on heat transfer coefficient and boiling mechanism was also carried out

    A Model for Abundances in Metal-Poor Stars

    Get PDF
    It is argued that the abundances of r-process related elements in stars with -3<[Fe/H]<-1 can be explained by the contributions of three sources. The sources are: the first generations of very massive (>100 solar masses) stars that are formed from Big Bang debris and are distinct from SNII, and two types of SNII, the H and L events, which can occur only at [Fe/H]>-3. The H events are of high frequency and produce dominantly heavy (A>130) r-elements but no Fe (presumably leaving behind black holes). The L events are of low frequency and produce Fe and dominantly light (A<130) r-elements (essentially none above Ba). By using the observed abundances in two ultra-metal-poor stars and the solar r-abundances, the initial or prompt inventory of elements produced by the first generations of very massive stars and the yields of H and L events can be determined. The abundances of a large number of elements in a star can then be calculated from the model by using only the observed Eu and Fe abundances. To match the model results and the observational data for stars with -3<[Fe/H]<-1 requires that the solar r-abundances for Sr, Y, Zr, and Ba must be significantly increased from the standard values. Whether the solar r-components of these elements used here to obtain a fit to the stellar data can be reconciled with those obtained from solar abundances by subtracting the s-components calculated from models is not clear.Comment: 47 pages, 19 figures, to appear in Ap
    • 

    corecore