125 research outputs found

    Accurate Reconstruction of Molecular Phylogenies for Proteins Using Codon and Amino Acid Unified Sequence Alignments (CAUSA)

    Get PDF
    Based on molecular clock hypothesis, and neutral theory of molecular evolution, molecular phylogenies have been widely used for inferring evolutionary history of organisms and individual genes. Traditionally, alignments and phylogeny trees of proteins and their coding DNA sequences are constructed separately, thus often different conclusions were drawn. Here we present a new strategy for sequence alignment and phylogenetic tree reconstruction, codon and amino acid unified sequence alignment (CAUSA), which aligns DNA and protein sequences and draw phylogenetic trees in a unified manner. We demonstrated that CAUSA improves both the accuracy of multiple sequence alignments and phylogenetic trees by solving a variety of molecular evolutionary problems in virus, bacteria and mammals. Our results support the hypothesis that the molecular clock for proteins has two pointers existing separately in DNA and protein sequences. It is more accurate to read the molecular clock by combination (additive) of these two pointers, since the ticking rates of them are sometimes consistent, sometimes different. CAUSA software were released as Open Source under GNU/GPL license, and are downloadable free of charge from the website www.dnapluspro.com

    Privacy-Preserving Blockchain-Based Federated Learning for IoT Devices

    Full text link
    Home appliance manufacturers strive to obtain feedback from users to improve their products and services to build a smart home system. To help manufacturers develop a smart home system, we design a federated learning (FL) system leveraging the reputation mechanism to assist home appliance manufacturers to train a machine learning model based on customers' data. Then, manufacturers can predict customers' requirements and consumption behaviors in the future. The working flow of the system includes two stages: in the first stage, customers train the initial model provided by the manufacturer using both the mobile phone and the mobile edge computing (MEC) server. Customers collect data from various home appliances using phones, and then they download and train the initial model with their local data. After deriving local models, customers sign on their models and send them to the blockchain. In case customers or manufacturers are malicious, we use the blockchain to replace the centralized aggregator in the traditional FL system. Since records on the blockchain are untampered, malicious customers or manufacturers' activities are traceable. In the second stage, manufacturers select customers or organizations as miners for calculating the averaged model using received models from customers. By the end of the crowdsourcing task, one of the miners, who is selected as the temporary leader, uploads the model to the blockchain. To protect customers' privacy and improve the test accuracy, we enforce differential privacy on the extracted features and propose a new normalization technique. We experimentally demonstrate that our normalization technique outperforms batch normalization when features are under differential privacy protection. In addition, to attract more customers to participate in the crowdsourcing FL task, we design an incentive mechanism to award participants.Comment: This paper appears in IEEE Internet of Things Journal (IoT-J

    Research on CO 2

    Full text link
    CO2 capture,utilization and storage (CCUS) is now recognized as an important technology in the global scope of CO2 emission reduction, pipeline transportation is the main center to connect the capture point and the use storage point, the first issue to CO2 pipeline transportation is to solve CO2 source quality research. Yanchang Oilfield has the advantages of CCUS, its coal chemical capture of CO2 contains different impurities. In the CO2 pipeline transportation, the impurity content in CO2 is based on its end use and the actual situation of pipeline. The impurities will affect the efficiency of CO2-EOR, the choice of CO2 state equation, the changes of CO2 phase diagram and the capacity of pipeline transportation

    DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain Question Answering over Knowledge Base and Text

    Full text link
    Large Language Models (LLMs) have exhibited impressive generation capabilities, but they suffer from hallucinations when solely relying on their internal knowledge, especially when answering questions that require less commonly known information. Retrieval-augmented LLMs have emerged as a potential solution to ground LLMs in external knowledge. Nonetheless, recent approaches have primarily emphasized retrieval from unstructured text corpora, owing to its seamless integration into prompts. When using structured data such as knowledge graphs, most methods simplify it into natural text, neglecting the underlying structures. Moreover, a significant gap in the current landscape is the absence of a realistic benchmark for evaluating the effectiveness of grounding LLMs on heterogeneous knowledge sources (e.g., knowledge base and text). To fill this gap, we have curated a comprehensive dataset that poses two unique challenges: (1) Two-hop multi-source questions that require retrieving information from both open-domain structured and unstructured knowledge sources; retrieving information from structured knowledge sources is a critical component in correctly answering the questions. (2) The generation of symbolic queries (e.g., SPARQL for Wikidata) is a key requirement, which adds another layer of challenge. Our dataset is created using a combination of automatic generation through predefined reasoning chains and human annotation. We also introduce a novel approach that leverages multiple retrieval tools, including text passage retrieval and symbolic language-assisted retrieval. Our model outperforms previous approaches by a significant margin, demonstrating its effectiveness in addressing the above-mentioned reasoning challenges

    Multi-H∞ controls for unknown input-interference nonlinear system with reinforcement learning

    Get PDF
    This article studies the multi-H∞ controls for the input-interference nonlinear systems via adaptive dynamic programming (ADP) method, which allows for multiple inputs to have the individual selfish component of the strategy to resist weighted interference. In this line, the ADP scheme is used to learn the Nash-optimization solutions of the input-interference nonlinear system such that multiple H∞ performance indices can reach the defined Nash equilibrium. First, the input-interference nonlinear system is given and the Nash equilibrium is defined. An adaptive neural network (NN) observer is introduced to identify the input-interference nonlinear dynamics. Then, the critic NNs are used to learn the multiple H∞ performance indices. A novel adaptive law is designed to update the critic NN weights by minimizing the Hamiltonian-Jacobi-Isaacs (HJI) equation, which can be used to directly calculate the multi-H∞ controls effectively by using input-output data such that the actor structure is avoided. Moreover, the control system stability and updated parameter convergence are proved. Finally, two numerical examples are simulated to verify the proposed ADP scheme for the input-interference nonlinear system

    Critical transition of soil microbial diversity and composition triggered by plant rhizosphere effects

    Get PDF
    Over the years, microbial community composition in the rhizosphere has been extensively studied as the most fascinating topic in microbial ecology. In general, plants affect soil microbiota through rhizodeposits and changes in abiotic conditions. However, a consensus on the response of microbiota traits to the rhizosphere and bulk soils in various ecosystems worldwide regarding community diversity and structure has not been reached yet. Here, we conducted a meta-analysis of 101 studies to investigate the microbial community changes between the rhizosphere and bulk soils across various plant species (maize, rice, vegetables, other crops, herbaceous, and woody plants). Our results showed that across all plant species, plant rhizosphere effects tended to reduce the rhizosphere soil pH, especially in neutral or slightly alkaline soils. Beta-diversity of bacterial community was significantly separated between into rhizosphere and bulk soils. Moreover, r-strategists and copiotrophs (e.g. Proteobacteria and Bacteroidetes) enriched by 24-27% in the rhizosphere across all plant species, while K-strategists and oligotrophic (e.g. Acidobacteria, Gemmatimonadete, Nitrospirae, and Planctomycetes) decreased by 15-42% in the rhizosphere. Actinobacteria, Firmicutes, and Chloroflexi are also depleted by in the plant rhizosphere compared with the bulk soil by 7-14%. The Actinobacteria exhibited consistently negative effect sizes across all plant species, except for maize and vegetables. In Firmicutes, both herbaceous and woody plants showed negative responses to rhizosphere effects, but those in maize and rice were contrarily enriched in the rhizosphere. With regards to Chloroflexi, apart from herbaceous plants showing a positive effect size, the plant rhizosphere effects were consistently negative across all other plant types. Verrucomicrobia exhibited a significantly positive effect size in maize, whereas herbaceous plants displayed a negative effect size in the rhizosphere. Overall, our meta-analysis exhibited significant changes in microbial community structure and diversity responding to the plant rhizosphere effects depending on plant species, further suggesting the importance of plant rhizosphere to environmental changes influencing plants and subsequently their controls over the rhizosphere microbiota related to nutrient cycling and soil health

    Strong optical response and light emission from a monolayer molecular crystal

    Get PDF
    Excitons in two-dimensional (2D) materials are tightly bound and exhibit rich physics. So far, the optical excitations in 2D semiconductors are dominated by Wannier-Mott excitons, but molecular systems can host Frenkel excitons (FE) with unique properties. Here, we report a strong optical response in a class of monolayer molecular J-aggregates. The exciton exhibits giant oscillator strength and absorption (over 30% for monolayer) at resonance, as well as photoluminescence quantum yield in the range of 60-100%. We observe evidence of superradiance (including increased oscillator strength, bathochromic shift, reduced linewidth and lifetime) at room-temperature and more progressively towards low temperature. These unique properties only exist in monolayer owing to the large unscreened dipole interactions and suppression of charge-transfer processes. Finally, we demonstrate light-emitting devices with the monolayer J-aggregate. The intrinsic device speed could be beyond 30 GHz, which is promising for next-generation ultrafast on-chip optical communications
    • …
    corecore