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Critical transition of soil
microbial diversity and
composition triggered by plant
rhizosphere effects

Xianheng Fu †, Yu Huang †, Qi Fu, Yingbo Qiu, Jiayi Zhao,
Jiaxin Li, Xicun Wu, Yihang Yang, Hongen Liu, Xian Yang*

and Huaihai Chen*

State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen,
Guangdong, China
Over the years, microbial community composition in the rhizosphere has been

extensively studied as the most fascinating topic in microbial ecology. In general,

plants affect soil microbiota through rhizodeposits and changes in abiotic

conditions. However, a consensus on the response of microbiota traits to the

rhizosphere and bulk soils in various ecosystems worldwide regarding

community diversity and structure has not been reached yet. Here, we

conducted a meta-analysis of 101 studies to investigate the microbial

community changes between the rhizosphere and bulk soils across various

plant species (maize, rice, vegetables, other crops, herbaceous, and woody

plants). Our results showed that across all plant species, plant rhizosphere

effects tended to reduce the rhizosphere soil pH, especially in neutral or

slightly alkaline soils. Beta-diversity of bacterial community was significantly

separated between into rhizosphere and bulk soils. Moreover, r-strategists and

copiotrophs (e.g. Proteobacteria and Bacteroidetes) enriched by 24-27% in the

rhizosphere across all plant species, while K-strategists and oligotrophic (e.g.

Acidobacteria, Gemmatimonadete, Nitrospirae, and Planctomycetes) decreased

by 15-42% in the rhizosphere. Actinobacteria, Firmicutes, and Chloroflexi are also

depleted by in the plant rhizosphere compared with the bulk soil by 7-14%. The

Actinobacteria exhibited consistently negative effect sizes across all plant

species, except for maize and vegetables. In Firmicutes, both herbaceous and

woody plants showed negative responses to rhizosphere effects, but those in

maize and rice were contrarily enriched in the rhizosphere. With regards to

Chloroflexi, apart from herbaceous plants showing a positive effect size, the plant

rhizosphere effects were consistently negative across all other plant types.

Verrucomicrobia exhibited a significantly positive effect size in maize, whereas

herbaceous plants displayed a negative effect size in the rhizosphere. Overall, our
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meta-analysis exhibited significant changes in microbial community structure

and diversity responding to the plant rhizosphere effects depending on plant

species, further suggesting the importance of plant rhizosphere to

environmental changes influencing plants and subsequently their controls

over the rhizosphere microbiota related to nutrient cycling and soil health.
KEYWORDS
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1 Introduction

The rhizosphere is the soil volume around the root with a rich

diversity of microorganisms, which is strongly affected by root

functioning (Philippot et al., 2013; Kuzyakov and Razavi, 2019; Qu

et al., 2020). The individual and interconnected processes occurring

in the rhizosphere have been extensively characterized,

encompassing exudate release, nutrient acquisition, and water

uptakes (Philippot et al., 2013; Sasse et al., 2018; Kuzyakov and

Razavi, 2019). These processes have contributed to the development

of a distinct microbial community structure in the rhizosphere

compared to the bulk soil, commonly referred to as the rhizosphere

effect (Aira et al., 2010; Fan et al., 2017; Sasse et al., 2018; Ling et al.,

2022). The rhizosphere microbiome can exert significant influences

on plant health, nutrition, and growth (Berendsen et al., 2012;

Philippot et al., 2013; Finkel et al., 2017). Plants benefit from

rhizosphere microorganisms to help acquire nutrients and

suppress pathogenic invasions (Bulgarelli et al., 2013; Poole, 2017;

Ling et al., 2022). For example, plant growth-promoting

rhizobacteria (PGPR) promotes plant growth through a wide

range of mechanisms, which is beneficial for the sustainability of

agriculture as the biofertilizers and biopesticides (Pii et al., 2015).

Similarly, legumes require rhizobia and mycorrhizal fungi to

improve plant productivity and N2 fixation (van der Heijden

et al., 2008; Kaschuk et al., 2010).

Although genotypes, root architecture, and growth stages tend

to affect the plant recruits relatively distinct rhizobacterial

communities (Aira et al., 2010; Li et al., 2014), plant itself exerts a

highly selective effect to shape the microbial community

composition in the rhizosphere, so the community composition

can be greatly similar across different environments (Marschner

et al., 2004; Costa et al., 2006; Berg and Smalla, 2009; Ling et al.,

2022). In addition, soils covered with vegetation, as one of the

sources of atmospheric CO2, may strongly contribute to the CO2

efflux by root and rhizomicrobial respiration (Kuzyakov, 2006;

Werth and Kuzyakov, 2008; Trivedi et al., 2013). The distinct

rhizomicrobial respiration processes (microbial respiration or

respiration by heterotrophs), regulating soil organic matter

(SOM) decomposition, was identified as one of the important

fine-scale components of the global carbon (C) cycle (Cheng,

1999; Kuzyakov, 2006; Huo et al., 2017; Jackson et al., 2019). The

microbial community control over C cycling in the rhizosphere has
02
been extensively studied (Kuzyakov, 2002; Schimel and Schaeffer,

2012; Schindlbacher et al., 2015; Kumar et al., 2016; Hunninghaus

et al., 2019; Semenov et al., 2019). Notably, some microbiota

exhibited strong resistance to perturbations, while other specific

microorganisms respond rapidly to changing environmental

conditions (Jiang et al., 2017). This caused a weak but measurable

effect on the rhizosphere microbial community even within a single

plant species (Bokulich et al., 2014). Therefore, comprehending the

taxonomic profiles of microbial communities in the rhizosphere

and bulk soil is critical to understand the microbial functions to

support plant growth and manage C cycling in the rhizosphere.

However, the information in the rhizosphere and bulk soils with

respect to the taxonomic profiles of microbial communities remains

largely unexplored.

Both plant species and soil properties affect the diversity and

structure of rhizosphere microbial community (Garbeva et al., 2008;

Jiang et al., 2017; Vorholt et al., 2017). The impact of soil

characteristics on rhizosphere microbial community is as

significant as that of the plant itself (Marschner et al., 2004; Fan

et al., 2018). In general, plant root systems alter the rhizosphere pH

by releasing H+ or OH−, and affecting the equilibrium between

cations and anions at the root-soil interface (Hinsinger et al., 2003;

Kuzyakov and Razavi, 2019). The pH of the soil is a key factor in

determining changes in the structure and diversity of the microbial

community (Tripathi et al., 2018; Kuzyakov and Razavi, 2019;

Lopes et al., 2021). As previous studies reported that soil pH was

the best predictor of soil microbial community diversity (Fierer and

Jackson, 2006). Therefore, investigating rhizosphere microbiomes is

critical for establishing a more complete knowledge of the role of

soil pH on microbial ecology. However, information is lacking on

the association of rhizosphere soil pH with the plant species.

Recently, sequencing and phylogenetic analysis of cultivation-

independent 16S rRNA genes provided the foundation for modern

studies of microorganisms living in the soil (Lundberg et al., 2012;

Fan et al., 2017; Fan et al., 2018; Ling et al., 2022). High-throughput

sequencing enables quantitative insights into microbial community

diversity and structure in high resolution (Singer et al., 2016).

Compared to traditional microbial community analyses, high-

throughput sequencing is known for its labor efficiency and cost-

effectiveness (Reuter et al., 2015). Most studies must be deposited

the raw data in a public gene bank, causing a huge and extensive

rhizosphere sequencing data set, which has cracked the way to
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further research into the broad principles of rhizosphere

microbiome selection from bulk soils (Ling et al., 2022). Thus, it

was urgently needed for a comprehensive study synthesizing

previous findings to infer the difference in the microbial

community structure between rhizosphere and bulk soils to a

wide range of plants and environmental conditions.

Here, we conducted a global meta-analysis of microbial

communities in the rhizosphere and bulk soil, with a specific

focus on bacteria and fungi due to their high prevalence and the

extensive attention they have received in comparison to other

members of the community (e.g., archaea, protists, and

nematodes, etc.) (Ling et al., 2022). The 16S and ITS rRNA

amplicon-based sequencing data were collected from published

articles to date. Specifically, our objective was to answer the

following questions: (i) how plant rhizosphere affects soil pH and

microbial diversity and composition, (ii) to what extent major

microbial taxa respond to plant rhizosphere effects, (iii) whether

the plant rhizosphere effects on microbial community were

dependent on plant species?
2 Materials and methods

2.1 Data collection

An extensive literature search was conducted using the Web of

Science database (http://apps.webofknowledge.com/). The data was

collected from peer-reviewed publications from 2014 to 2021 for our
Frontiers in Plant Science 03
literature survey and review. We search for terms including

“rhizosphere”, “bulk”, “fungi”, “bacteria”, “microbial community”,

“DNA extraction”, “PCR Amplification”, “16s”, “ITS”, “high-

throughput”, “pyrosequencing”, and “Illumina”, etc. in the title,

keyword, or abstract. We obtained a total of 861 data points based on

101 publications around the world (Figure 1). Detailed information was

given in Table S1. The data from manipulation experiments conducted

in laboratory settings were excluded. We exclusively employed 16S and

ITS data, as detailed in Table S1, for the purpose of this study. We

examined the microbial community structure of bacteria and fungi by

analyzing their relative abundance at the phylum level. The phylum level

is often employed in rhizosphere and bulk soil research, and findings for

the majority of microbial community analyses are commonly based on

high-throughput sequencing technique.

The means (M), standard deviations (SD), and sample sizes (n)

were obtained from both rhizosphere and bulk soils in each study. If

only the standard error (SE) was provided, SD was calculated as SE

multiplied by the square root of sample size. Missing standard

deviations were estimated using the average coefficient of variation

of datasets with known SDs (Chen et al., 2019). Data in tables were

directly transferred to our dataset, while data in figures were

extracted using Data Thief software, which is specifically designed

for retrieving axis-related information from images (B. Tummers,

DataThief III. 2006 https://datathief.org/). To ensure the accuracy

and quality of the extracted data, only taxa with an average relative

abundance > 2% were included. Taxa that were absent in any

treatment or replicate of a study were excluded from the data

extraction process (Dai et al., 2018).
FIGURE 1

Global distribution of rhizosphere and bulk data used in this meta-analysis, including 861 data points from 101 publications. Six groups of plant
species are shown in the legends, with sample sizes for each group given in parentheses.
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2.2 Meta-analysis

The 16S and ITS data collected in this study were utilized for

meta-analysis. The impacts of plant roots on soil microbial

compositions were evaluated using the rhizosphere soil against

the pairwise bulk soil (Chen et al., 2022). The natural log-

transformed response ratio was previously described (Gurevitch

et al., 2018):

ln R = ln(Xt) − ln(Xc) (1)

Where ln R denotes the natural log of response ratio and is

defined as the effect size, Xt, and Xc are the mean value of the

rhizosphere and bulk soil, respectively, which are directly extracted

from data of publications included in this meta-analysis. The ln R

was further weighted by the pooled variance(v):

v =
SD2

t

ntX2
t
+

SD2
c

ncX2
c

(2)

where SDt and SDc are the SD of rhizosphere and bulk soil,

respectively, nt and nc are the sample size of the rhizosphere and

bulk soil, respectively, which are directly extracted from data of

publications included in this meta-analysis. The results obtained

from both meta-analysis approaches were identical. We only

reported the grand means and bias-corrected 95% CIs of effect

sizes calculated by MetaWin because the 95% CIs from this

approach enable us to assess the potential publication bias.

The total heterogeneity (QT) of the dataset (i.e. microbial

structure and soil pH) was divided into within-group (QW) and

between-group (Qb) variations. The Q statistic has k-1 degrees of

freedom and follows a Chi-square distribution, where k is the

number of matched observations between rhizosphere and bulk

soils. When the bias-corrected 95% CIs did not overlap zero, the

effect size was considered substantially positive or negative at the =

0.05 level (Gurevitch et al., 2018). The lnR (effect size) was

transformed and revealed as the percentage variation under

rhizosphere relative to bulk soil:

(R − 1)� 100% (3)

where R denotes the response ratio. In our meta-analysis, the soil

pH of rhizosphere was divided into five groups as follows: 5 (pH<

5), 6 (5 ≤ pH<6), 7 (6 ≤ pH<7), 8 (7 ≤ pH<8), and 9 (8 ≤ pH<9).

The groups of soil pH were used to examine if there were any

significant differences in effect size among the groups. The plant

species were divided into maize, rice, vegetables, other crops,

herbaceous, and woody plants. The means of effect size between

the groups of soil pH or plant species were considered to be

significant at a = 0.05 when bias-corrected 95% CIs were

non-overlapping.
2.3 Statistics

Based on the relative abundance of major fungal and bacterial

phylum, we calculated Bray-Curtis dissimilarity for principal

coordinate analysis (PCoA). PCoA was performed to visualize the
Frontiers in Plant Science 04
microbial community structure of rhizosphere and bulk soil. Bray-

Curtis similarity was calculated to construct triangular pairwise

Bray-Curtis similarity matrix using PRIMER 7 (Plymouth Routines

in Multivariate Ecological Research Statistical Software, v7.0.13,

PRIMER-E Ltd, UK). ANOSIM and ADONIS tests were used to test

the cluster significance of samples from the Bray-Curtis similarity

distances, which were calculated based on the relative abundance of

the major microbial groups. Taxonomic classification was

performed using the Silva 16S rRNA and the UNITE fungal ITS

reference database in all publications which we obtained. Most

statistical analyses were performed in R (v4.0.1; http://www.r-

project.org/).
3 Results

3.1 Soil pH in the rhizosphere and the
bulk soil

Across all studies, the means of effect size of soil pH was -2%,

indicating a significantly (P<0.05) negative effect in rhizosphere

than bulk soils on soil pH (Figure 2). In particular, when soil pH > 7,

effect sizes of soil pH were significantly (P<0.05) lower than zero,

showing that rhizosphere effects on soil pH were most in neutral or

slightly alkaline soils. However, with a decline of soil pH, the effect

sizes of rhizosphere also increased and became positive (+3%)

under soil pH = 5, suggesting that bulk soil pH condition was the

main factor for the rhizosphere effects on soil pH. Similarly, the

effect size of rhizosphere on soil pH was also dependent on plant

species, in which the effect sizes in rice (-1%) and vegetables (-4%)

were significantly (P<0.05) lower than zero, while herbaceous and

woody has non-significant effect sizes and maize even had a positive

effects size (+2%).
3.2 The composition and diversity of soil
microbial community

Although the means of effect size of bacterial richness were not

significantly different from zero, the effect size of bacterial richness

in vegetables was significantly (P<0.05) negative (-29%) (Figure 3).

However, across all plant species, the means of effect size of bacterial

Shannon index were significantly (P<0.05) negative (-4%).

Specifically, the effect sizes of bacterial Shannon index in plant

types of maize, rice, vegetables, herbaceous and other crops were

significantly (P<0.05) lower than zero (-9% to -2%) while those in

wood plants were non-significant.

Across all studies, the bacterial communities mainly consist of

Proteobacteria (39%), Actinobacteria (14%), Acidobacteria (11%),

Bacteroidetes (8%), Firmicutes (7%), Chloroflexi (6%),

Verrucomicrobia (4%), Gemmatimonadete (4%), Planctomycetes

(3%), and Nitrospirae (1%), with the relative abundance in the

descending order (Figure 4A). Based on the composition of major

phyla found in our study, PCoA of the Bray-Curtis distances was

conducted to reveal that the beta-diversity of bacterial community

was significantly separated between into rhizosphere and bulk soils
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(PERMANOVA, P< 0.0001) (Figure 4B). Specifically, the bacterial

community structure of rhizosphere soils was also dependent on

plant species (PERMANOVA, P< 0.0001) (Figure 4C). For example,

the bacterial community structure in vegetable rhizosphere was

significantly separated from those in maize, rice, and woody plants

(PERMANOVA, P< 0.0001).
Frontiers in Plant Science 05
3.3 Variation of the phylum in different
plant species rhizosphere soil

In total, there were two major phyla showing significantly

(P<0.05) positive effect size of plant rhizosphere, including

Bacteroidetes (+27%) and Proteobacteria (+24%) (Figure 5).
A

B

FIGURE 2

Effect size of soil pH (A) and plant species effect on soil pH (B). The bulk soil pH was grouped ranging from 5 (pH< 5), 6 (5 ≤ pH<6), 7 (6 ≤ pH<7),
8 (7 ≤ pH<8) and 9 (8 ≤ pH<9). Plant species including maize, rice, vegetables, herbaceous and woody plants. Data are expressed as the mean
effect size (d++) with bias-corrected 95% confidence intervals. Percentage changes for means and observation numbers for the category are given in
parentheses. Asterisk indicates P< 0.05.
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When the dataset was divided by plant species, the relative

abundance of Bacteroidetes was significantly (P<0.05) enriched in

the rhizosphere of maize (+34%), vegetables (+47%), woody plants

(+38%), and other crops (+91%). The phylum of Proteobacteria was

generally enhanced in the rhizosphere of all plant species except
Frontiers in Plant Science 06
rice, such as maize (+20%), vegetables (+25%), herbaceous (+22%),

and woody plants (+35%).

However, four bacterial phyla with average relative abundance

over 5% had an overall negative effect size of plant rhizosphere

across all plant species, although the reduction percentages varied,
FIGURE 3

Effects of plant species on bacterial alpha-diversity, i.e., Richness and Shannon indices, grouped by the plant species. Data is expressed as the mean
effect size (d++) with bias-corrected 95% confidence intervals. Percentage changes for means and observation numbers for the category are given in
parentheses. Asterisk indicates P< 0.05.
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such as Acidobacteria (-28%), Actinobacteria (-7%), Firmicutes

(-14%), and Chloroflexi (-12%) (Figure 6). Specifically, in

Acidobacteria, though all plant species had negative effect size,

the negative effects of rhizosphere in vegetables was the lowest

(-48%), significantly (P<0.05) lower than those in maize (-18%)

and herbaceous plants (-22%). In Actinobacteria, all plant species,

with the exception of maize (-4%) and vegetables (+32%),

exhibited negative effect sizes ranging from -18% to -10%. In

Firmicutes, both herbaceous (-27%) and woody plants (-33%)

showed negative responses to rhizosphere effects, but those in

maize (28%) and rice (52%) were contrarily enriched in the

rhizosphere. In Chloroflexi, apart from herbaceous plants

showing a positive effect size (+28%), the plant rhizosphere

effects were consistently negative across all other plant types

(ranging from -42% to -16%).

With an average relative abundance of less than 5%, three

bacterial phyla showed negative effect size in general, including

Gemmatimonadete (-29%), Nitrospirae (-42%), and Planctomycetes

(-15%) (Figure 7). The phylum Gemmatimonadete was significantly

(P<0.05) depleted in the rhizosphere of all plant types except

herbaceous plants and other crops, such as maize (-31%), rice

(-51%), vegetables (-42%), and woody plants (-28%). Furthermore,

the phylum Nitrospirae was significantly (P<0.05) depleted in the

rhizosphere of all plant species (from -77% to -19%). Similarly, in

Planctomycetes, the effect sizes of rhizosphere effects were all negative

across all plant types (from -37% to -17%) except herbaceous plants.
Frontiers in Plant Science 07
Last but not least, although Verrucomicrobia showed no significant

response to the rhizosphere effect on average, maize had a

significantly (P<0.05) positive effect size (+39%), while herbaceous

plants had a negative effect size in the rhizosphere (-9%).

In fungal communities, the effect size of rhizosphere was less

significant compared to bacteria. Neither Ascomycota nor

Basidiomycota showed a significant (P<0.05) response to the

rhizosphere effect (Figure 8). However, the phylum Ascomycota

enriched in the rhizosphere of maize (+30%) and vegetables

(+32%), while the phylum Basidiomycota depleted in the

rhizosphere of maize (-52%) and vegetables (-60%), and enriched

in herbaceous plants (+22%).
4 Discussion

4.1 Soil pH responding to rhizosphere
effects in various plant species

Our meta-analysis revealed that both the effect sizes of bulk soil

pH > 6 and the mean effect sizes of soil pH were significantly negative

(Figure 2). These findings imply that most plants tend to decrease the

rhizosphere soil pH compared with the bulk soil across all studies. A

previous study has reported that the release of H+ by roots is a

dominant mechanism for plants to mobilize nutrients and maintain

electrochemical potential on the root surface in slightly acidic, neutral,
A B

C

FIGURE 4

The relative abundance of major bacterial taxas at the phylum levels (A), the principal coordinate analysis (PCoA) of microbial beta-diversity based on
Bray-Curtis similarity distances between rhizosphere and bulk soils (B) and among plant species (C).
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and alkaline soils (Marschner, 2012). Under the extreme soil pH

condition (too low or too high), plant roots can mitigate the

constraints, such as plant roots that could alleviate Al3+ or Fe3+

toxicity in acidic pH conditions, and also Fe or Mn deficiency in

alkaline pH conditions (Philippot et al., 2013; Kuzyakov and Razavi,

2019). Thus, our results that the effect sizes of rhizosphere were

significantly lower than zero in soil pH > 6 further suggested that plant
Frontiers in Plant Science 08
roots could alleviate constraints under neutral or slightly alkaline

conditions. Moreover, our result showed the effect sizes of rice and

vegetables were significantly lower than zero, which implies that the

roots of rice and vegetables tend to acidify the rhizosphere soil more

severely than other plants. This is in line with the fact that rice root

exudates organic acid decreasing rhizosphere soil pH, increasing

amino acid availability, and promoting ammonia release and
FIGURE 5

Plant rhizosphere effects on major bacterial phyla (mean proportion > 5%), i.e., Bacteriodetes and Proteobacteria, grouped by the plant species including
maize, rice, vegetables, other crops, herbaceous and woody plants. Data is expressed as the mean effect size (d++) with bias-corrected 95% confidence
intervals. Percentage changes for means and observation numbers for the category are given in parentheses. Asterisk indicates P< 0.05.
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subsequent nitrification (Dohrmann et al., 2013; Di Salvo et al., 2018).

Furthermore, legumes acidify the rhizosphere soil through excess

cation uptakes during N2 fixation and photosynthetic activity to

alter cation-anion uptake ratios (Bolan et al., 1991; Rao et al., 2000;

Rao et al., 2002). Similarly, it has been found that the rhizosphere soil

pH of pak choi decreased by root exudates, which mainly consist of

organic acids and amino acids (e.g., citric acid, ferulic acid, cinnamic

acid, glutamic acid, alanine, and valine) (Kim et al., 2017; Jeon et al.,

2018; Cai et al., 2019). As previous studies report most plant species

tend to acidify the rhizosphere soil (Kuzyakov and Razavi, 2019), our

results further provide substantial evidences to support that these pH

variation may significantly contribute to the assembly of soil microbial

community in plant rhizophere.
4.2 Distinct microbial community diversity
and structure in the rhizosphere

In our analysis, PCoA of the Bray-Curtis distances showed

significant clustering of bacterial communities between rhizosphere
Frontiers in Plant Science 09
and bulk soils, with decreased community diversity (Shannon

index) observed in the rhizosphere soil across different plant

species (Figures 3, 4B). This is consistent with previous findings

that diversity decreased from the bulk soil to the roots (Poole, 2017;

Semenov et al., 2019). The significant contrast between the bulk soil

and rhizosphere soil is a crucial factor contributing to variations in

microbiota composition (Yan et al., 2017; Ren et al., 2020). For

example, Fan et al. (2017) reported that the distance decay

relationship (from the root surface to bulk soil) can reflect

variations in microbial community composition. In addition, it

has been suggested that the decrease in diversity from the bulk soil

to roots could be attributed to root “rhizosphere effect” (Bulgarelli

et al., 2012; Lundberg et al., 2012; Barajas et al., 2020; Attia et al.,

2022; Santoyo, 2022). Specific microorganisms are commonly

selected by plant roots to colonize the rhizosphere, which can

attract beneficial microorganisms to improve nutrient acquisition

and combat pathogenic taxa for plants (Dennis et al., 2010;

Berendsen et al., 2012; Fan et al., 2017). Generally, the

rhizosphere is a highly selective environment that can select

microbiome through two distinct processes (Fan et al., 2017; Fan
FIGURE 6

Plant rhizosphere effects on major bacterial phyla (mean proportion > 5%), i.e., Acidobacteria, Actinobacteria, Firmicutes and Chloroflexi, grouped by
the plant species including maize, rice, vegetables, other crops, herbaceous and woody plants. Data is expressed as the mean effect size (d++) with
bias-corrected 95% confidence intervals. Percentage changes for means and observation numbers for the category are given in parentheses.
Asterisk indicates P< 0.05.
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et al., 2018). The first process involves the general recruitment of

microbes to the proximity of the root, whereas the second process

involves the transition of microbes from external to internal

occupancy in the root (Edwards et al., 2015). Molecular signals

from plants, including components of root exudates and possibly

cell wall or membrane proteins (Edwards et al., 2015; Edwards et al.,

2018; Kuzyakov and Razavi, 2019), are involved in the selection of

microbial communities. Notably, the DNA extraction protocols for

metagenomic DNA, particularly in relation to rhizosphere and soil

samples, may introduce inherent biases due to variations in

rhizosphere soil sampling procedures and differences arising from

DNA extraction methods. Despite the presence of disparities, our

study represents a comprehensive synthesis of over 100 studies, thus

mitigating any potential systematic biases.

Additionally, the results of the present meta-analysis showed

that rhizosphere soil microbial community structure varies

depending on plant species (Figure 4C). This is in agreement with

previous studies that the plant species and the genotypes of

individual plants can exert a profound influence on the
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composition of their associated microbial communities in the

rhizosphere (Schweitzer et al., 2008; Lau and Lennon, 2012; Bever

et al., 2013). However, our meta-analysis showed the phyla

Proteobacteria and Bacteroidetes are consistently enriched in the

rhizosphere (Figure 5). This result suggests that the phyla

Proteobacteria and Bacteroidetes are well-suited to the

rhizosphere, which provides C-rich conditions for high metabolic

activity, fast growth, and propagation (Pausch et al., 2013;

Kuzyakov and Razavi, 2019). The phyla Proteobacteria and

Bacteroidetes are generally considered r-strategists and

copiotrophs that respond to labile C sources, and fast-growing

microbiota with population opportunity fluctuations (Fierer et al.,

2007; Peiffer et al., 2013). In contrast, our meta-analysis showed that

the phyla Acidobacteria, Gemmatimonadete, Nitrospirae, and

Planctomycetes are consistently depleted in the rhizosphere

(Figures 6, 7). It has been previously reported that the phyla

Acidobacteria were depleted in wheat rhizosphere under the field

of North China Plain (Fan et al., 2017). Moreover, a previous study

reported that the phyla Acidobacteria were enriched in the bulk soil,
FIGURE 7

Plant rhizosphere effects on other bacterial phyla (median proportion of 1-5%), i.e., Gemmatimonadete, Nitrospirae, Planctomycetes and Verrucomicrobia,
grouped by the plant species including maize, rice, vegetables, other crops, herbaceous and woody plants. Data is expressed as the mean effect size (d++)
with bias-corrected 95% confidence intervals. Percentage changes for means and observation numbers for the category are given in parentheses. Asterisk
indicates P< 0.05.
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while depleted in the rhizosphere soil under the Central European

grasslands and forests (Kaiser et al., 2016). Similar results have been

revealed in Mexico’s agroecosystem, German grassland, and forest

soil as well (Foesel et al., 2014; Embarcadero-Jimenez et al., 2016;

Dawson et al., 2017). As a result, these phyla are extremely similar

in rhizosphere soil across varied plant species (Ling et al., 2022).
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Similarly, Planctomycetes are more abundant in the rhizosphere

than in bulk soil (Fierer et al., 2007). The phyla Gemmatimonadete,

Nitrospirae, and Planctomycetes have been extensively detected as

K-strategists (slow-growing microbiota) and oligotrophic that are

adapted to survive when resource was limited or low substrate

concentrations (Fontaine et al., 2003; Bernard et al., 2007;
FIGURE 8

Plant rhizosphere effects on major fungal phyla (mean proportion > 5%), i.e. Ascomycota and Basidiomycota, grouped by the plant species including
maize, rice, vegetables, other crops, herbaceous and woody plants. Data is expressed as the mean effect size (d++) with bias-corrected 95%
confidence intervals. Percentage change for means and observation numbers for the category are given in parentheses. Asterisk indicates P< 0.05.
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Blackburne et al., 2007), and generally considered to be enriched in

the bulk soil with less energy and nutrients compared with the

rhizosphere soil. Overall, our meta-analysis implied that the phyla

Proteobacteria and Bacteroidetes enriched commonly in the

rhizosphere of most plant species, while Acidobacteria,

Gemmatimonadete, Nitrospirae, and Planctomycetes were

depleted contrarily by plant rhizosphere effects. Notably,

agricultural practices might make up the plant-associated

microbial communities. Tillage can lead to shifts in microbial

communities as anaerobic microorganisms are exposed to oxygen

(Coleman-Derr et al., 2016; Dawson et al., 2017). Reduced or no-till

farming can preserve anaerobic niches and maintain a different

microbial community structure. Synthetic fertilizers often provide

easily accessible nutrients, which can favor certain microbial taxa,

while organic fertilizers release nutrients slowly, supporting a more

diverse microbial community (Yang et al., 2017). Crop rotation and

the diversity of crops planted in a field can provide different root

exudates and organic matter, altering the nutrient availability and

microbial community. This practice promotes a more diverse and

dynamic microbial community (Visioli et al., 2018; Wang

et al., 2020).

Moreover, the responses of the phyla Actinobacteria,

Firmicutes, Chloroflexi, and Verrucomicrobia to plant

rhizosphere were highly dependent on plant species (Figures 6,

7). The phyla Actinobacteria was significantly depleted in the

rhizosphere of rice, herbaceous, woody, and other crops, while

enriched in that of vegetables. For example, it has been found that

the phylum Actinobacteria dominated the wild beet rhizosphere

(Zachow et al., 2014) and lettuce rhizosphere (Blau et al., 2019).

Additionally, the phylum Actinobacteria has been shown to

dominate in the pak choi rhizosphere compared with the bulk

soil with or without Se application (Cai et al., 2019). In addition, we

showed that the phylum Chloroflexi significantly depleted in the

rhizosphere of maize, rice, vegetables, and woody, while enriched in

that of herbaceous plants (Figure 6). This is in agreement with a

previous study reporting that the relative abundance of Chloroflexi

increased from 2.7% to 8.0% in the rhizosphere compared to the

bulk soil across 19 herbaceous plants (Dawson et al., 2017). We

found that the phyla Firmicutes significantly enriched in the

rhizosphere of maize and rice, while depleted in those of

herbaceous, woody plants, and other crops. This is in line with

previous studies observing that the phylum Firmicutes significantly

increased in the rhizosphere compared with the bulk soil in maize

fields at different rice growth stages (de Araujo et al., 2019; Li et al.,

2019). Similarly, the abundance of Verrucomicrobia revealed

opposite trends between the rhizosphere of maize and herbaceous

plants (Figure 7), which was greatly observed in previous studies

(Coleman-Derr et al., 2016; Dawson et al., 2017; Yang et al., 2017;

Visioli et al., 2018; Wang et al., 2020).

Additionally, the phyla Ascomycota and Basidiomycota were the

dominant fungal communities having distinct responses to

rhizosphere depending on plant species (Figure 8), indicating that

plant species differentiate their root microbiota in a species-specific

manner (Berg and Smalla, 2009; Aira et al., 2010; Dawson et al.,

2017). Such as, Ascomycota had a higher relative abundance in the

rhizosphere of maize. In contrast, bulk soils had a higher abundance
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of Basidiomycota (Philippot et al., 2013). Commonly, plant species

determine the structure of the rhizosphere soil microbial community

as follows: firstly, the soil layer surrounding the roots promotes the

growth of organotrophic microorganisms and initiates a shift in the

soil microbiome through rhizodeposits and root cell wall features

(Bulgarelli et al., 2013); secondly, the selection process that depends

on the host genotype occurs close to the root surface (Reinhold-

Hurek et al., 2015), fine-tuning the community profiles that thrive on

the rhizoplane. Overall, the phyla Proteobacteria and Bacteroidetes

are considered r-strategists that enriched in rhizosphere across all

plant species, while Acidobacteria, Gemmatimonadete, Nitrospirae,

and Planctomycetes are considered as K-strategists that depleted in

rhizosphere across all plant species. Especially, Actinobacteria,

Firmicutes, Chloroflexi, and Verrucomicrobia were selected in a

species-specific manner from various plant species, thus revealing

divergent abundance among different plants.
5 Conclusions

Our study demonstrates a significant distinction in the

microbial community structure between the bulk and rhizosphere

soils, which simultaneously vary depending on plant species. In

particular, r-strategists (e.g. Proteobacteria and Bacteroidetes)

enriched in the rhizosphere but K-strategists (e.g. Acidobacteria,

Gemmatimonadete, Nitrospirae, and Planctomycetes) depleted in

the rhizosphere. In contrast, the responses of some microbiota (e.g.

Actinobacteria, Firmicutes, Chloroflexi, Verrucomicrobia,

Ascomycota, and Basidiomycota) to plant rhizosphere effects were

dependent on plant types through species-specific manner. This

meta-analysis has revealed that plants generally exert a rhizosphere

acidification effect through the release of organic acids via root

exudates, which may particularly affect certain microbial species in

the rhizosphere. Further investigations are needed to identify

various environmental factors that influence plants and,

subsequently, their influences on the rhizosphere microbiota

associated with nutrient cycling and soil health.
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