318 research outputs found

    Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts

    Get PDF
    Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC), as well as the amygdala form a circuit implicated in emotion regulation and the pathogenesis of MDD. The aim of this study was to identify whether patients with MDD who had a history of SA show structural and functional connectivity abnormalities in the amygdala and PFC relative to MDD patients without a history of SA. We measured gray matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349, P = 0.000), and diminished functional connectivity between the bilateral amygdala and ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who had MDD without a history of SA, and the HC group. These findings provide evidence that the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for suicide intervention

    Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts

    Get PDF
    Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC), as well as the amygdala form a circuit implicated in emotion regulation and the pathogenesis of MDD. The aim of this study was to identify whether patients with MDD who had a history of SA show structural and functional connectivity abnormalities in the amygdala and PFC relative to MDD patients without a history of SA. We measured gray matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349, P = 0.000), and diminished functional connectivity between the bilateral amygdala and ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who had MDD without a history of SA, and the HC group. These findings provide evidence that the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for suicide intervention

    Effects of pH on phosphorus form transformation in lake sediments

    Get PDF
    The pH value of lake water varies with the lake environment, which has an effect on the form of phosphorus in sediment, and then the release of sediment phosphorus. The form of phosphorus in sediments was analyzed using field sampling. The environmental conditions with pH values of 4.0, 7.0 and 10.0 were simulated indoors to estimate the effects of pH on phosphorus release from sediments and the content change of various forms of phosphorus was studied. The results showed that in Wuliangsuhai Lake, Ca-P accounted for 54.3%, which was the largest portion of the TP. Phosphorus release was favored under acidic and alkaline conditions, and the alkaline condition was more favorable. The proportion of Fe/Mn-P and Fe/Al-P in the TP decreased with an increase in the pH, while the proportion of Ca-P in the TP increased with an increase in the pH. Under the alkaline condition (pH = 10), Ca-P in the sediment increased significantly, with an increase of 22.5%. However, Fe/Mn-P and Fe/Al-P decreased significantly, with drops of 37.3% and44.9%, respectively. Under the acidic condition (pH = 4), Fe/Mn-P and Fe/Al-P in the sediment increased significantly, and the increases were 63.1% and 37.1%, respectively. However, Ca-P decreased significantly, with a drop of 39.2%. In general, low pH promoted the release of Ca-P, and a high pH promoted the release of Fe/Mn-P and Fe/Al-P. Wuliangsuhai Lake water is characterized by weak alkaline characteristics throughout the year, and biological available phosphorus accounts for 13.3%-20.9% of the TP, with Fe/Mn-P being the dominant form. This study revealed that the risk of phosphorus release from sediments to the overlying water was greater under alkaline conditions.Peer reviewe

    Water Balance Analysis of Hulun Lake, a Semi-Arid UNESCO Wetland, Using Multi-Source Data

    Get PDF
    Hulun Lake is the largest lake in northeastern China, and its basin is located in China and Mongolia. This research aims to analyze the dynamic changes in the water volume of Hulun Lake and to estimate the groundwater recharge of the lake during the past 60 years. Multi-source data were used, and water-level-data-interpolation extrapolation, water-balance equations, and other methods were applied. The proportion of the contribution of each component to the quantity of water in Hulun Lake during the last 60 years was accurately calculated. Evaporation loss was the main component in the water loss in Hulun Lake. In the last 60 years, the average annual runoff into the lake was about 1.202 billion m3, and it was the factor with the largest variation range and the leading factor affecting the changes in the quantity of water in Hulun Lake. There was groundwater recharge in Hulun Lake for a long period, and the average annual groundwater recharge was about 776 million m3 (excluding leakage). The contribution ratio of the river water, groundwater, and precipitation to the recharging of Hulun Lake was about 5:3:2. The changes in the quantity of water in Hulun Lake are affected by climate change and human activities in China and Mongolia, especially those in Mongolia

    Microbial Properties Depending on Fertilization Regime in Agricultural Soils with Different Texture and Climate Conditions: A Meta-Analysis

    Get PDF
    Over-fertilization has a significant impact on soil microbial properties and its ecological environment. However, the effects of long-term fertilization on microbial properties on a large scale are still vague. This meta-analysis collected 6211 data points from 109 long-term experimental sites in China to evaluate the effects of fertilizer type and fertilization duration, as well as soil and climate conditions, on the effect sizes on various microbial properties and indices. The organic fertilizers combined with straw (NPKS) and manure (NPKM) had the highest effect sizes, while the chemical fertilizers N (sole N fertilizer) and NPK (NPK fertilizer) had the lowest. When compared with the control, NPKM treatment had the highest effect size, while N treatment had the lowest effect size on MBN (111% vs. 19%), PLFA (110% vs. −7%), fungi (88% vs. 43%), Actinomycetes (97% vs. 44%), urease (77% vs. 25%), catalase (15% vs. −11%), and phosphatase (58% vs. 4%). NPKM treatment had the highest while NPK treatment had the lowest effect size on bacteria (123% vs. 33%). NPKS treatment had the highest while N treatment had the lowest effect sizes on MBC (77% vs. 8%) and invertase (59% vs. 0.2%). NPKS treatment had the highest while NPK treatment had the lowest effect size on the Shannon index (5% vs. 1%). The effect sizes of NPKM treatment were the highest predominantly in arid regions because of the naturally low organic carbon in soils of these regions. The effect sizes on various microbial properties were also highly dependent on soil texture. In coarse-textured soils the effect sizes on MBC and MBN peaked sooner compared with those of clayey or silty soils, although various enzymes were most active in silty soils during the first 10 years of fertilization. Effect sizes on microbial properties were generally higher under NPKM and NPKS treatments than under NPK or N treatments, with considerable effects due to climate conditions. The optimal field fertilizer regime could be determined based on the effects of fertilizer type on soil microorganisms under various climate conditions and soil textures. This will contribute to the microbial biodiversity and soil health of agricultural land. Such controls should be used for adaptation of fertilization strategies to global changes
    • …
    corecore