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Structural and Functional
Abnormities of Amygdala and
Prefrontal Cortex in Major
Depressive Disorder With
Suicide Attempts
Lifei Wang1,2,3, Yimeng Zhao1,2,3, Elliot K. Edmiston4, Fay Y. Womer5, Ran Zhang2,
Pengfei Zhao2, Xiaowei Jiang3,6, Feng Wu2, Lingtao Kong2, Yifang Zhou2,7,
Yanqing Tang2,7* and Shengnan Wei3,6*

1 Department of Psychiatry, China Medical University, Shenyang, China, 2 Department of Psychiatry, First Affiliated Hospital,
China Medical University, Shenyang, China, 3 Brain Function Research Section, First Affiliated Hospital, China Medical
University, Shenyang, China, 4 Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA,
United States, 5 Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, United States,
6 Department of Radiology, First Affiliated Hospital, China Medical University, Shenyang, China, 7 Department of Geriatric
Medicine, First Affiliated Hospital, China Medical University, Shenyang, China

Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may
be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC),
as well as the amygdala form a circuit implicated in emotion regulation and the
pathogenesis of MDD. The aim of this study was to identify whether patients with MDD
who had a history of SA show structural and functional connectivity abnormalities in the
amygdala and PFC relative to MDD patients without a history of SA. We measured gray
matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using
structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD
patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy
control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the
right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349,
P = 0.000), and diminished functional connectivity between the bilateral amygdala and
ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who
had MDD without a history of SA, and the HC group. These findings provide evidence that
the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in
MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for
suicide intervention.
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INTRODUCTION

Major depressive disorder (MDD) is one of the most common
mental disorders (1), which is commonly associated with a
higher suicide risk (2, 3). Previous studies have reported that
patients with MDD had a 2%–12% lifetime risk of dying by
suicide (4, 5), and the new study reported that the rated of suicide
attempts (SA) was greater 4.78% in MDD by assessments of
3,284 adults with/without suicidal acts (6). Therefore, finding
neurological features relating to SA in MDD patients could be a
major achievement in preventing suicidal behavior (7).

The amygdala and prefrontal cortex (PFC) are two key brain
regions which are responsible for processing emotional and
cognitive information, especially emotional stimulation and
executive function (8, 9). Recent structural and functional
magnetic resonance imaging (MRI) studies demonstrate that
the amygdala and PFC have been strongly implicated in MDD
(10–17). For example, previous studies in MDD patients
provided evidence of increased activation in the amygdala, and
enlarged amygdala volume or reduced amygdala volume (10–
14), which are mixed results due to different sample and method,
so we will continue to explore the amygdala volume issue in this
study. Regarding the PFC, morphological and functional
alterations have been shown primarily in the orbitofrontal
cortex, dorsolateral and ventrolateral PFC in MDD patients
(12, 15–17). Depressed individuals also display decreased
relationships between amygdala and dorsolateral PFC
activity (12).

Neuroimaging studies suggest that abnormalities of the
amygdala and PFC are closely related with SA in patients with
MDD. For example, patients with a history of suicidal attempt
have larger right amygdala volumes than nonsuicidal (18).
Wagner and Blumberg and their colleagues found that MDD
patients with prior SA showed significantly thinner cortex in the
left dorsolateral, ventrolateral and prefrontal cortex in contrast to
nonsuicide attempted patients (19, 20). MDD patients with a
history of SA had lower orbitofrontal cortex gray matter volumes
compared with those with no SA, or healthy comparison subjects
(18, 21–23). A recent diffusion tensor imaging study showed that
abnormal projections to the orbitofrontal cortex may disrupt
affective and cognitive function, thereby conferring a heightened
vulnerability for SA in MDD (24). However, few structural MRI
studies have examined the gray matter volumes in amygdala and
PFC in MDD with SA.

In addition to structural anomalies, there is also evidence for
functional alterations in MDD patients with a history of suicidal
behavior. Functional MRI studies found that MDD might be
associated with a disturbed amygdala-PFC functional
connectivity (FC). For example, MDD patients display
decreased coupling between the amygdala and dorsolateral
PFC (12, 25). Work from our lab has also shown altered
amygdala-rostral, ventral, and dorsolateral PFC FC in MDD
patients (26–28). Furthermore, patients who have attempted
suicide show significant reductions in amygdala-prefrontal FC
compared with a nonattempter patient group (29). With regard
to MDD patients with SA, Kang and colleagues identified greater

resting state FC in the amygdala in suicide attempters with MDD
versus nonattempters, and there was greater connectivity of the
left amygdala with the left superior OFC (30). So alterations in
amygdala-PFC FC may be very important feature for MDD
patients with SA. Understanding the PFC-amygdala neural
circuitry with SA in MDD may be more beneficial to prevent
suicide behavior.

The MRI literatures on suicide attempt in MDD suggested
alterations of both structure and function in the amygdala-PFC
neural circuitry. Compared with single neuroimaging analysis,
the multiple neuroimaging analyses such as combining
functional connectivity, regional gray matter volume, as well as
combining amplitude of low-frequency fluctuations and white
matter connectivity, could be used not only to explore the local
functional and structural abnormalities, but also to identify more
precisely the key neural circuitry in the mental disorders,
providing the evidence to better understand the the
mechanism of mental disorders in-depth (29, 31–33).
Additionally, the latest studies suggested that data from
multimodal fusion of structural and functional brain imaging
analyses may be helpful to specifically predict symptoms and
treatment effects in mental diseases (34, 35). Therefore, in the
present study, we applied a multivariate model, which evaluate to
more thoroughly characterize brain structural and functional
abnormalities in MDD patient with SA. We hypothesized that
patients with MDD who had a history of SA would demonstrate
volumetric and FC differences in the amygdala and PFC relative
to both HC and MDD patients without a history of SA, and we
would perform to explore the relationships between the
structural and functional findings across modalities.

MATERIALS AND METHODS

Subjects
The study included 158 subjects aged 18–59 years: 38 MDD
patients with a history of SA (mean age: 27.61 ± 10.536 years; 11
males), 60 MDD patients without a history of SA (mean age:
28.13 ± 7.617 years; 13 males), and 60 HC individuals (mean age:
25.83 ± 5.898 years; 17 males). Patients were divided into two
groups: those with a history of SA [at least one attempt defined as
a self-destructive act with some degree of intent to die (36)] and
patients without a history of SA (nonattempters; no such
history). Subjects were not considered suicide attempters if
their self-injurious behavior was determined to have no
suicidal intent. All patients were from Shenyang Mental Health
Center and the Department of Psychiatry, First Affiliated
Hospital of China Medical University, Shenyang, China. HC
were recruited by advertising within the community. This study
was approved by the Institutional Review Board of China
Medical University. All participants provided written informed
consent after receiving a detailed description of the study. All
participants were evaluated by two trained psychiatrists to
determine the presence or absence of Axis I psychiatric
diagnoses using the Structured Clinical Interview for
Diagnostic and Statistical Manual of Mental Disorders, Fourth
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Edition (DSM-IV) Axis I Disorders (SCID). MDD participants
met DSM-IV diagnostic criteria for MDD and did not meet the
criteria for any other Axis I disorder. HC participants did not
have a current or lifetime Axis I disorder, or a history of
psychosis, other Axis I disorders, or a history of SA in first-
degree relatives as determined by a detailed family history.
Participants were excluded if they had substance/alcohol
abuse/dependence or a concomitant major medical disorder,
any MRI contraindications, a history of head trauma with loss
of consciousness for ≥5 min, or any neurological disorder. All
subjects were evaluated using the Hamilton Depression Rating
Scale (HAM-D) and Young Mania Rating Scale (YMRS).

MRI Acquisition
MRI data were acquired using a GE signa HDX 3.0T scanner with
a standard 8-channel head coil at the First Affiliated Hospital of
China Medical University, Shenyang, China. Three-dimensional,
high-resolution, T1-weighted images was collected using a 3D fast
spoiled gradient-echo (FSPGR) sequence with the following
parameters: TR/TE = 7.1/3.2 ms, image matrix = 240 × 240,
field of view (FOV) = 240 mm2 × 240 mm2, 176 contiguous slices
of 1mm without gap, voxel size = 1.0 mm3. We acquired fMRI
images using a spin echo planar imaging (EPI) sequence, parallel
to the anterior-posterior commissure plane with the following
scan parameters: repetition time (TR) = 2000 ms; echo time
(TE) > = 40 ms; image matrix = 64×64; field of view (FOV) =
24 cm2 × 24 cm2; 35 contiguous slices of 3 mm without gap; scan
time = 6 min 40 s (the 6 min 40 s scans included a total of 200
volumes). We acquired a high-resolution structural image using a
three-dimensional fast spoiled gradient-echo T1-weighted
sequence: TR = 7.1 ms, TE = 3.2 ms, FOV = 24 cm × 24 cm,
matrix = 240 × 240, slice thickness = 1.0 mm without gap, and
176 slices.

Data Preprocessing
Structural brain images were processed using VBM8 toolbox
(http://dbm.neuro.uni-jena.de/vbm8/), in Statistical Parametric
Mapping 8 (SPM8; The Wellcome Department of Cognitive
Neurology). VBM8 processing includes bias correction, tissue
classification, and spatial normalization with Diffeomorphic
Anatomical Registration Through Exponentiated Lie algebra
(DARTEL) (37). Using the default parameters of VBM8,
images were spatially normalized to the Montreal Neurological
Institute (MNI) space to 1.5-mm3 voxel resolution. The
modulation process was performed using nonlinear
deformations employed for normalization that allowed for
comparison of the absolute amount of tissue, corrected for
individual brain sizes. Finally, all images were smoothed with
an isotropic Gaussian kernel of 8-mm full width at half
maximum (FWHM). These segmented, normalized,
modulated, and spatially smoothed GM images were then used
for subsequent VBM second-level statistical analysis.

Resting-state fMRI data preprocessing was carried out using
Data Processing and Analysis for Brain Imaging software
(DPABI; DPABI_V1.2_141101, http://rfmri.org/dpabi) (38), a
toolbox for SPM8. The first ten volumes were discarded to allow
for steady-state magnetization. Further data preprocessing

included slice timing correction, head motion correction,
spatial normalization, and smoothing. Spatial normalization
was performed with the standard MNI EPI template. Spatial
smoothing was completed with a 6-mm FWHM Gaussian filter.
Data were then linearly detrended (39) and filtered using a band-
pass temporal filter (0.01-0.08 Hz). We regressed for nuisance
covariates, including the rigid-body 6 model, white matter signal,
cerebrospinal fluid signal, and global signals. Subjects with head
motion parameters exceeding 3 mm in displacement or 3° in
rotation were excluded from the final analysis.

Definition of Region of Interest
The Wake Forest University PickAtlas (http://fmri.wfubmc.edu/
software/PickAtlas) was used to define the regions of interest for
the PFC and amygdala. The PFC included the superior frontal
gyrus, dorsolateral (Frontal_Sup), superior frontal gyrus, orbital
part (Frontal_Sup_Orb), middle frontal gyrus (Frontal_Mid),
middle frontal gyrus, orbital part (Frontal_Mid_Orb), inferior
frontal gyrus, opercular part (Frontal_Inf_Oper), inferior frontal
gyrus, triangular part (Frontal_Inf_Tri), inferior frontal gyrus,
orbital part (Frontal_Inf_Orb), superior frontal gyrus, medial
(Frontal_Sup_Medial), and superior frontal gyrus, medial orbital
(Frontal_Mid_Orb), in the left and right hemispheres. We used
the bilateral Automated Anatomical Labeling atlas template to
define the amygdala regions of interest (40).

FC Analysis
FC analysis was performed using correlation analysis between
the seed amygdala ROI and PFC mask in a voxelwise manner
using DPABI. The correlation coefficients were then transformed
to z-values using the Fisher r-to-z transformation.

Statistical Analysis
The demographic and clinical characteristics of the subjects were
analyzed using IBM SPSS Statistics for Windows, Version 22.0
(Armonk, NY, USA). Student's t-tests, one-way analyses of
variance, or Chi-square tests were used depending on the
normality of the distribution and type of data. Categorical
variables were described using frequencies and proportions.
Statistical significance was determined by P < 0.05. Continuous
variables were presented as mean ± standard deviation (P < 0.05,
Bonferroni test). Partial correlation analyses (two-tailed),
controlling for age and sex, were performed to explore the
relationships between GMVs, FC, and symptom scores in the
patient group (P < 0.05, Bonferroni correction). Additionally, we
performed correlation analyses between GMVs/FC and HAM-D
scores in MDD with SA group or in MDD without SA group in
order to explore the association between GMVs/FC and the
severity of attempt suicide, which could be evaluated by the
HAM-D scores inMDD [(6, 41)] (P < 0.05, Bonferroni correction).

The GMVs of the bilateral PFC and amygdala were compared
among the groups using one-way analysis of variance (ANOVA),
with age and gender as covariates, using the general linear model
in SPM8 (Wellcome Trust Centre for Neuroimaging, http://
www.fil.ion.ucl.ac.uk/spm/software/spm8/). Amygdala-PFC FC
was compared among the groups by one-way analysis of variance
(One-way ANOVA), with age and gender as covariates, using

Wang et al. Changes of Amygdala and Prefrontal Cortex

Frontiers in Psychiatry | www.frontiersin.org January 2020 | Volume 10 | Article 9233

http://dbm.neuro.uni-jena.de/vbm8/
http://rfmri.org/dpabi
http://fmri.wfubmc.edu/software/PickAtlas
http://fmri.wfubmc.edu/software/PickAtlas
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.frontiersin.org/journals/psychiatry
http://www.frontiersin.org/
https://www.frontiersin.org/journals/psychiatry#articles


Data Processing and Analysis for Brain Imaging software
(DPABI; DPABI_V1.2_141101, http://rfmri.org/dpabi). Group
differences were considered significant for p values less than
0.001 (corrected, Gaussian random field [GRF] correction), and
corresponding to a threshold of 69, 1, and 27 contiguous voxels
for the GMVs of the bilateral PFC and amygdala and Z values of
FC, respectively. We then extracted GMVs and Z values of FC for
each cluster with significant differences for the three group
comparison and conducted pairwise two sample t-tests,
corrected for multiple comparisons (P < 0.05, Bonferroni test).

RESULTS

Demographics and Clinical Characteristics
Table 1 shows detailed participant demographic and clinical
data. There were no significant differences among the three
groups in terms of age (F = 1.374, P = 0.256), or sex
(c2 = 0.928, P = 0.629). There was no significant difference in
illness duration (T = 1.105, P = 0.275), or medication status (c2 =
0.582, P = 0.445) between the two MDD groups. As expected,
three groups showed significant differences in HAM-D scores
and YMRS scores (HAM-D: F = 83.907, P = .000; YMRS: F =
5.449, P = .005). Post hoc analyses found the MDD with and
without a history of SA groups showed significantly higher
HAM-D scores and YMRS scores than the HC group,
however, HAM-D and YMRS scores demonstrated no
significant differences between the two MDD groups.

Group Differences in GMV
Significant group differences were found in grey matter volumes
in the bilateral amygdala (F = 30.270, P = 0.000) and in PFC
regions including the ventral, medial, and dorsal PFC (F =
15.349, P = 0.000) (Figure 1, Table 2). Post hoc comparisons
showed significant differences in GMV across all 3 groups (P <
0.03): HC > MDD without history of SA > MDD with history of
SA for bilateral amygdala and ventral/medial/dorsal PFC
volumes (Figure 2). Findings were unchanged with intracranial
volume (ICV) as a covariate.

Group Differences in FC
Three-group analysis of FC showed significant differences in
bilateral amygdala-left and right ventral PFC and bilateral

amygdala-left and right medial PFC (F = 22.467, P = 0.000)
(Table 3, Figure 3). MDD with a history of SA had significantly
decreased FC in bilateral amygdala-left and right ventral PFC
and bilateral amygdala-left and right medial PFC, compared with
the HC (P = 0.000), and the MDD without a history of SA (P =
0.000), but no difference was observed in FC between the MDD
without a history of SA and the HC group (P = 1.000) (Figure 4).
Findings were unchanged with ICV as a covariate.

Correlations Between GMV, FC, and
Symptom Scores
No significant correlations between the GMVs, FC, and symptom
measures were observed in the MDD patient group (P > 0.05,
Bonferroni correction). There were also no significant correlations
between GMVs/FC and HAM-D scores inMDDwith SA group or
MDD without SA group, separately (P > 0.05, Bonferroni
correction). We used the left and right amygdala separately as the
seedROI, theGMVsof left and right amygdala and the left and right
amygdala-PFC functional connectivity were compared among the
groups. Additionally, the subjects were divided into males and
females, and the structural and functional changes were compared
among three groups separately. We have added these detailed
analyses (Supplementary Material).

DISCUSSION

We report that MDD patients with a history of SA have decreased
gray matter volume in the amygdala and PFC, and reduced
functional connectivity from the amygdala to PFC, compared to
both HC and individuals with MDD without a history of SA.
Structural differences occurred in a graded fashion, such that
MDD with a history of SA showed the lowest volumes, then
MDD without a history of SA, then the HC group. In contrast,
functional connectivity differences were only present between the
MDD SA group and the MDD without SA group; there were no
significant differences between the MDD without SA and the HC
groups. We discuss the implications of these findings below.

The amygdala has a well-documented role in emotion
processing (8, 42). We found reduced amygdala volume in
patients with a history of SA, consistent with 43). A recent
meta-analysis found decreased GMV in subcortical structures in

TABLE 1 | Demographics and clinical characteristics of all participants.

Variables MDDwith a history of SA
(n = 38)

MDDwithout a history of
SA (n = 60)

HC
(n = 60)

F/c2 P

Age (Mean ± SD) 27.61 ± 10.536 28.13 ± 7.617 25.83 ± 5.898 1.374 0.256
Gender, male (n, %) 11(28.95%) 13(31.67%) 17(28.33%) 0.928 0.629
Duration (months; Mean ± SD) 32.63 ± 83.17 17.17 ± 29.08 1.105* 0.275
Medication, yes (n, %) 22(57.90%) 30(50.00%) 0.582 0.445
HAM-D (Mean ± SD) (n = 38) (n = 58) (n = 51)

18.55 ± 10.747 19.48 ± 9.289 1.02 ± 1.913 83.907 .000
YMRS (Mean ± SD) (n = 37) (n = 55) (n = 50)

1.89 ± 4.074 1.87 ± 3.849 0.04 ± 0.198 5.449 0.005

*T values; MDD, major depressive disorder; HC, healthy controls; SA, suicide attempts; SD, standard deviation; HAM-D, Hamilton Depression Rating Scale; YMRS, Young Manic Rating Scale.
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MDDwith suicidal ideation and attempt compared with controls
(44), also in line with our findings of decreased amygdala and
PFC GM volumes. However, larger amygdala volumes have been
shown in MDD females with suicidal ideation compared with
nonsuicidal MDD (18). The inconsistency may relate to
differences in patient characteristics (both males and females
with MDD were included in this study). Future studies
specifically examining sex differences in the amygdala in MDD
and suicidal behavior are warranted. Several prior studies have
found physiological differences in the amygdala in MDD patients
who have attempted or died by suicide compared with
individuals who have not, implicating the amygdala as a

potential neurobiological substrate for suicidal behavior in
MDD. Ballard et al. suggest that the amygdala may mediate
fear-potentiated startle in MDD individuals with lifetime history
of suicide attempt (45). In addition, reductions in the messenger
RNA levels of multiple transcripts of QKI in the amygdala have
been found in suicide victims compared with control subject
(46), and significantly lower numbers of a 2A-adrenoceptors in
the amygdala of depressed suicide completers compared with
controls (47).

The PFC may be an important associated with suicidal
behavior, particularly in the ventral PFC, medial PFC, and
dorsal PFC (18, 48–51). The current evidence in adults

FIGURE 1 | (A) Significant differences in grey matter volumes of the amygdala among the major depressive disorder (MDD) with a history of suicide attempts (SA),
MDD without a history of SA, and healthy controls (HC) groups. (B) Significant differences in grey matter volumes of the prefrontal cortex (PFC) among the MDD with
a history of SA, MDD without a history of SA, and HC groups. Significant at P < 0.001, corrected by Gaussian random field (GRF) correction.

TABLE 2 | Brain regions showing significant differences in amygdala and prefrontal cortex (PFC) between major depressive disorder (MDD) with and without a history of
suicide attempts (SA) and healthy controls (HC) groups.

Index Region Voxel MNI coordinates F Values*

X Y Z

Amygdala right amygdala 42 21 −6 −12 12.33
left amygdala 44 −18 0 −18 15.30

PFC left and right ventral PFC 2011 6 60 −9 21.14
left and right medial PFC
left and right dorsal PFC

MNI, Montreal Neurological Institute. *Significant at P < 0.001 corrected by Gaussian random field correction.
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FIGURE 2 | Post-hoc analysis of grey matter volumes of amygdala and
prefrontal cortex (PFC) among the major depressive disorder (MDD) with a
history of suicide attempts (SA), MDD without a history of SA, and HC
groups.

TABLE 3 | Prefrontal cortex (PFC) regions showing significant changes from
bilateral amygdala to PFC functional connectivity (FC) between major depressive
disorder (MDD) with and without a history of suicide attempts (SA) and healthy
controls (HC) groups.

Region Voxel MNI coordinates F Values*

X Y Z

left and right ventral PFC 193 12 48 −21 14.81
left and right medial PFC

MNI, Montreal Neurological Institute. *Significant at P < 0.001 corrected by Gaussian
random field correction.

FIGURE 3 | Significant differences in amygdala–prefrontal cortex (PFC) functional connectivity (FC) among the major depressive disorder (MDD) with a history of
suicide attempts (SA), MDD without a history of SA, and HC groups. Significant at P < 0.001, corrected by Gaussian random field (GRF) correction.

FIGURE 4 | Post-hoc analysis of amygdala–prefrontal cortex (PFC)
functional connectivity (FC) among the major depressive disorder (MDD)
with a history of suicide attempts (SA), MDD without a history of SA, and
HC groups.
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who have attempted suicide supports ventral prefrontal volume
decreases and dysfunction have been linked to lethality (52).
Prefrontal localized hypofunction and impaired serotonergic
responsivity are proportional to the lethality of the suicide
attempt in depressed patients, especially in the ventral, medial,
and lateral PFC (53). Suicide action was associated
with abnormal activity in the medial PFC (54). In our study,
significant volume decreases in the ventral, medial, and
dorsal PFC regions were found in suicide attempters with MDD.

Prior studies have reduced GMV in the ventral PFC and
medial PFC in MDD individuals with prior suicide attempters
(18, 29, 43, 49, 50, 55, 56). Other studies have found reduced
GVM in orbitofrontal cortex in MDD patients with a history of
SA, compared with those without SA and HC subjects (18, 21–
23). Thus, alterations in PFC GMV are implicated in suicidal
behavior in MDD patients.

FC between the bilateral amygdala and ventral and medial
PFC regions was decreased in MDD patients with a history of
SA, compared to MDD patients with a history of SA and HC
groups in this study. Our findings are supported by prior finding
of decreased FC between the amygdala and ventral PFC in
suicide attempters (29). However, increased FC between the left
amygdala with left superior OFC has been observed in suicide
attempters with MDD versus nonattempter (30). Differences in
sample size (this study had larger sample size) and methodology
(different amygdala seed regions) may contribute to differences
in findings. Nevertheless, these findings altogether suggest that
abnormalities in amygdala-ventral/medial PFC neural circuitry
may relate to suicidal behavior and could provide insight into
the mechanisms underlying suicidality in MDD. In this study,
amygdala-ventral/medial PFC FC was lower in the MDD
without a history of SA but not statistically different when
compared to the HC group. Prior studies, including work from
this group, has found alterations in FC between the amygdala and
ventral/medial PFC in MDD (27, 28, 57). So whether the
functional neural basis from the amygdala to the PFC is related
to the pathophysiology of MDD need the further study.

There are several limitations to this study. Firstly, the sample
size was not large enough, but we are continuing to collect
relevant samples for future research. Secondly, some patients
are prescribed psychotropic medications or demonstrate a
longer duration of illness, which may affect the accuracy of
the results. Thirdly, our study excluded the patients with other
psychiatric comorbidities. While this provided sample
homogeneity and likely improved our ability to detect
significant effects, the generalizability of our findings is
unclear as the majority MDD patients have other psychiatric
comorbidities. Fourthly, we did not collect other information to
assess severity of suicide ideation and suicide attempt (e.g.,
Suicide Intent Scale (SIS), and Columbia Suicide Severity Rating
Scale (C-SSRS)), so we did not know what our findings
are related to the severity of SA. Fourthly, in our study we did
not collect information on the numbers of SA associated with
the severity attempts. It is an important to record the times of
SA and assess the severity of depression related to severity
attempts to better understand the severity of SA. Finally, our

study had no specific assessment of the impulse scale associated
with suicidal behavior in our study. Further studies addressing
these limitations are needed for more definitive understanding
of complex relationship between neural structure and function
and suicidal behavior in MDD.

CONCLUSIONS

MDD patients with a history of SA exhibited decreased GMV in
the amygdala, and ventral/medial/dorsal PFC, as well as reduced
FC between amygdala and ventral/medial PFC. These findings
indicate structural and functional alterations in the amygdala in
suicidal behavior in MDD. Moreover, the study highlights the
importance of the amygdala and PFC circuitry in suicidal
behavior in MDD and implicates the amygdala-ventral/medial
PFC circuit as a potential target for suicide intervention.
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