411 research outputs found

    Unload Pull-out Test of Full-length Grouted Bolts in Slope Reconstruction and Expansion

    Get PDF
    The Unloading Pull-out Test Method (UPTM) is proposed to evaluate the residual stress of existing anchorage systems and explore the actual stable state of the slope before excavation. A series of destructive pull-out tests are applied to detect the working state of the existing rock bolts. The working load and ultimate load of the existing bolts are determined by field test measurement of the P-S curve. The experimental result showed that a displacement increment of the bolts was present in the elastic stage, the elastoplastic stage, the slip stage, and the debonding stage. The working load and the ultimate load were in the elastoplastic stage and the debonding stage respectively. The working load of the bolts is closely related to the sliding deformation. The ultimate load of the bolts, however, is only related to the design parameters, slope lithology and other factors. After 20 years of natural forces acting on the bolts in the slope, their ultimate bearing capacity had a stress loss of 24.0% ~ 32.0%

    Variable pitch approach for performance improving of straight-bladed VAWT at rated tip speed ratio

    Get PDF
    This paper presents a new variable pitch (VP) approach to increase the peak power coefficient of the straight-bladed vertical-axis wind turbine (VAWT), by widening the azimuthal angle band of the blade with the highest aerodynamic torque, instead of increasing the highest torque. The new VP-approach provides a curve of pitch angle designed for the blade operating at the rated tip speed ratio (TSR) corresponding to the peak power coefficient of the fixed pitch (FP)-VAWT. The effects of the new approach are exploited by using the double multiple stream tubes (DMST) model and Prandtl’s mathematics to evaluate the blade tip loss. The research describes the effects from six aspects, including the lift, drag, angle of attack (AoA), resultant velocity, torque, and power output, through a comparison between VP-VAWTs and FP-VAWTs working at four TSRs: 4, 4.5, 5, and 5.5. Compared with the FP-blade, the VP-blade has a wider azimuthal zone with the maximum AoA, lift, drag, and torque in the upwind half-cycle, and yields the two new larger maximum values in the downwind half-cycle. The power distribution in the swept area of the turbine changes from an arched shape of the FP-VAWT into the rectangular shape of the VP-VAWT. The new VP-approach markedly widens the highest-performance zone of the blade in a revolution, and ultimately achieves an 18.9% growth of the peak power coefficient of the VAWT at the optimum TSR. Besides achieving this growth, the new pitching method will enhance the performance at TSRs that are higher than current optimal values, and an increase of torque is also generated

    The Annual Rhythmic Differentiation of Populus davidiana Growth–Climate Response Under a Warming Climate in The Greater Hinggan Mountains

    Get PDF
    The stability and balance of forest ecosystems have been seriously affected by climate change. Herein, we use dendrochronological methods to investigate the radial growth and climate response of pioneer tree species in the southern margin of cold temperate coniferous forest based on Populus davidiana growing on the Greater Hinggan Mountains in northeastern China. Correlations of P. davidiana growth with temperature and precipitation in a year (October–September) were rhythmically opposed: while temperatures in previous October–June (winter and spring) and in May–September (growing season) respectively inhibited and promoted radial growth on P. davidiana (p \u3c 0.01), precipitation in the same periods respectively promoted and inhibited of growth (p \u3c 0.01). High temperature or less rain/snow in winter and early spring, and low temperature or excess rainfall in summer, are inconducive to P. davidiana growth and vice versa (p \u3c 0.01). In addition, in March–April, when air temperature was above 0 °C and ground temperature below 0 °C, physiological drought caused significant growth inhibition in P. davidiana (p \u3c 0.05). In general, temperatures play a driving and controlling role in the synergistic effect of temperature and precipitation on P. davidiana growth. Under current conditions of available water supply, changes of temperature, especially warming, are beneficial to the growth of P. davidiana in the study area. The current climate conditions promote the growth of P. davidiana, the pioneer species, compared with the growth inhibition of Larix gmelinii, the dominant species. Thus, the structure and function of boreal forest might be changed under global warming by irreversible alterations in the growth and composition of coniferous and broadleaf tree species in the forest

    SyreaNet: A Physically Guided Underwater Image Enhancement Framework Integrating Synthetic and Real Images

    Full text link
    Underwater image enhancement (UIE) is vital for high-level vision-related underwater tasks. Although learning-based UIE methods have made remarkable achievements in recent years, it's still challenging for them to consistently deal with various underwater conditions, which could be caused by: 1) the use of the simplified atmospheric image formation model in UIE may result in severe errors; 2) the network trained solely with synthetic images might have difficulty in generalizing well to real underwater images. In this work, we, for the first time, propose a framework \textit{SyreaNet} for UIE that integrates both synthetic and real data under the guidance of the revised underwater image formation model and novel domain adaptation (DA) strategies. First, an underwater image synthesis module based on the revised model is proposed. Then, a physically guided disentangled network is designed to predict the clear images by combining both synthetic and real underwater images. The intra- and inter-domain gaps are abridged by fully exchanging the domain knowledge. Extensive experiments demonstrate the superiority of our framework over other state-of-the-art (SOTA) learning-based UIE methods qualitatively and quantitatively. The code and dataset are publicly available at https://github.com/RockWenJJ/SyreaNet.git.Comment: 7 pages; 10 figure

    RPG-Palm: Realistic Pseudo-data Generation for Palmprint Recognition

    Full text link
    Palmprint recently shows great potential in recognition applications as it is a privacy-friendly and stable biometric. However, the lack of large-scale public palmprint datasets limits further research and development of palmprint recognition. In this paper, we propose a novel realistic pseudo-palmprint generation (RPG) model to synthesize palmprints with massive identities. We first introduce a conditional modulation generator to improve the intra-class diversity. Then an identity-aware loss is proposed to ensure identity consistency against unpaired training. We further improve the B\'ezier palm creases generation strategy to guarantee identity independence. Extensive experimental results demonstrate that synthetic pretraining significantly boosts the recognition model performance. For example, our model improves the state-of-the-art B\'ezierPalm by more than 5%5\% and 14%14\% in terms of TAR@FAR=1e-6 under the 1:11:1 and 1:31:3 Open-set protocol. When accessing only 10%10\% of the real training data, our method still outperforms ArcFace with 100%100\% real training data, indicating that we are closer to real-data-free palmprint recognition.Comment: 12 pages,8 figure

    High-Dose siRNAs Upregulate Mouse Eri-1 at both Transcription and Posttranscription Levels

    Get PDF
    The eri-1 gene encodes a 3′ exonuclease that can negatively regulate RNA interference via siRNase activity. High-dose siRNAs (hd-siRNAs) can enhance Eri-1 expression, which in return degrade siRNAs and greatly reduces RNAi efficiency. Here we report that hd-siRNAs induce mouse Eri-1 (meri-1) expression through the recruitment of Sp1, Ets-1, and STAT3 to the meri-1 promoter and the formation of an Sp1-Ets-1-STAT3 complex. In addition, hd-siRNAs also abolish the 3′ untranslated region (UTR) mediated posttranscriptional repression of meri-1. Our findings demonstrate the molecular mechanism underlying the upregulation of meri-1 by hd-siRNA
    • …
    corecore