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Cerebrovascular disease (CeVD) is one of the leading global causes of death and
severe disability. To date, retinal microangiopathy has become a reflection of cerebral
microangiopathy, mirroring the vascular pathological modifications in vivo. To evaluate
the retinal structure and microvasculature in patients with CeVD, we conducted a cross-
sectional study in Zhongshan Ophthalmic Center and Department of Neurology of
Third Affiliated Hospital, Sun Yat-sen University using optical coherence tomography
angiography (OCTA). CeVD patients (n = 121; 238 eyes) and healthy controls (n = 44;
57 eyes) were included in the analysis. The CeVD group showed significant thinning of
the peripapillary retinal nerve fiber layer (pRNFL) thickness in the temporal and nasal
quadrants, and thinning of the macular ganglion cell-inner plexiform layer (GC-IPL) in
the inferior quadrant, while macular microvasculature reduction was prominent in all
nine quadrants. There were significant correlations between OCTA parameters, visual
acuity, and transcranial doppler parameters in the CeVD group. The specific structural
parameters combining microvasculature indices showed the best diagnostic accuracies
(AUC = 0.918) to discriminate CeVD group from healthy controls. To conclude, we
proved that OCTA reveals specific patterns of retinal structural changes and extensive
macular microvascular changes in CeVD. Additionally, these retinal abnormalities could
prove useful disease biomarkers in the management of individuals at high risk of
debilitating complications from a cerebrovascular event.

Keywords: cerebrovascular disease, optical coherence tomography angiography, retinal vascular density, retinal
structure, retinal microvasculature
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INTRODUCTION

Cerebrovascular disease (CeVD), affecting blood vessels that
supply the brain, is one of the leading global causes of
death and severe disability (Menken et al., 2000; Kochanek
et al., 2019; Li et al., 2020). Despite extensive research on
neuroimaging techniques, identifying patients at high risk of
cerebrovascular complications is based on limited data that
emphasize brain morphological changes (Paradise et al., 2018).
In order to optimize treatment plans, a major research drive is
the identification of potential biomarkers in other organs which
reflect the underlying small vessel changes contributing to disease
besides the brain (Arnould et al., 2018).

There is mounting evidence that the retina provides an
accurate window into cerebrovascular and systemic vascular
conditions (Stenkamp, 2015; Miesfeld and Brown, 2019; Rim
et al., 2020). This is unsurprising given that the retina
and the cerebrum share a common neurodevelopmental
origin. Embryologically, besides the cerebrum, the forebrain
neuroectoderm also contributes to the development of the
retinal pigment epithelium and neural retina (Stenkamp, 2015;
Miesfeld and Brown, 2019). Anatomically, both the anterior
brain and the retina are supplied by the internal carotid artery
(ICA; Rim et al., 2020). Although the brain vasculature has a
complex intricate architecture, it has been suggested that retinal
microangiopathy is a reflection of cerebral microangiopathy,
mirroring the vascular pathological modifications in vivo
(Goto et al., 1975).

The links between retinal parameters and CeVD have been
extensively evaluated (Wong et al., 2001, 2002; Couper et al.,
2002; Mitchell et al., 2005; McGeechan et al., 2009; Cheung
et al., 2010; Hanff et al., 2014; Rajanala et al., 2020). Three
major groups of retinal changes have been connected to
CeVD, namely, features of hypertensive retinopathy, clinical
retinal diseases, and retinal microvascular abnormalities
(including arteriovenous nicking, focal arteriolar narrowing,
and decreased arteriole-to-venule ratio; Wong et al., 2001;
Mitchell et al., 2005; Cheung et al., 2010; Hanff et al.,
2014). In addition, retinal microvascular abnormalities are
correlated with an increased risk of stroke and stroke mortality
(Wong et al., 2002). Longitudinal studies indicate that retinal
vascular changes can predict patients at risk of progression
to clinical CeVD (McGeechan et al., 2009; Rajanala et al.,
2020). However, most studies were conducted using retinal
photography (Wong et al., 2001; Couper et al., 2002; Mitchell
et al., 2005; Cheung et al., 2010; Hanff et al., 2014), which
cannot provide direct quantitative information on optic nerve
structure and retinal vascular flow, and is less sensitive in
the detection of retinal irregularities compared with optical
coherence tomography (OCT; Goebel and Franke, 2006;
Ouyang et al., 2013).

Abbreviations: AUC, area under the curve; CCA, common carotid artery; CeVD,
cerebrovascular disease; FAZ, foveal avascular zone; GC-IPL, ganglion cell-inner
plexiform layer; GEEs, generalized estimating equations; ICA, internal carotid
artery; OA, ophthalmic artery; OCT, optical coherence tomography; OCTA, optical
coherence tomography angiography; PD, perfusion density; pRNFL, peripapillary
retinal nerve fiber layer; SCP, superficial capillary plexus; VD, vessel density.

Optical coherence tomography angiography (OCTA) allows
real-time quantitative evaluation of optic nerve structure and
retinal vascular flow yielding greater image acquisition rates
and sensitive measurements (Jia et al., 2015). Advanced OCTA
techniques have become essential in the decision-making process
of retinal disease management and can be used to identify
CeVD patients (Kashani et al., 2017). Currently, the association
between CeVD and abnormal findings in OCTA has not yet
been investigated. In this study, we used OCTA to define
whether specific patterns of damage involving the optic nerve
and macular microvasculature is observed in patients with CeVD.
The main outcome measures were peripapillary retinal nerve
fiber layer (pRNFL) and macular ganglion cell-inner plexiform
layer (GC-IPL) thickness, and macular vessel density (VD),
and perfusion density (PD) in the superficial capillary plexus.
We hypothesized that retinal structural and microvascular
abnormalities in CeVD patients are quantifiable by OCTA, and
these abnormalities could be considered as surrogate pathological
markers for CeVD.

MATERIALS AND METHODS

Subject Recruitment
Participants were volunteers who benefited from an
OCTA examination from December 3, 2019 to May 3,
2020, and were recruited from Zhongshan Ophthalmic
Center and Department of Neurology of The Third
Affiliated Hospital, Sun Yat-sen University, Guangzhou,
China. Written informed consent was obtained from all
the participants. This study was approved by the Ethics
Committee of Zhongshan Ophthalmic Center, Sun Yat-sen
University (ethics board approval number: 2019KYPJ163),
and it was conducted in accordance with the tenets of the
Declaration of Helsinki.

Cerebrovascular disease patients were included if they were
≥18 years old. Two neurologists confirmed the diagnosis of
CeVD, which in this study included intracranial hemorrhage and
cerebral ischemia. Classification is based on the International
Statistical Classification of Diseases and Related Health
Problems 11th Revision from 2018 onward. Patients were
excluded for the following reasons: (1) subjects diagnosed
with other systemic diseases, including diabetes; (2) ocular
diseases (including myopia (<-6 diopter), hyperopia (>6
diopter), the opacity of refractive media, age-related macular
degeneration, glaucoma, hypertensive or diabetic retinopathy,
optic disk pathology, and other eye pathology) or previous
ocular surgery; (3) age < 18 years old; and (4) inability to
provide informed consent. The criteria for inclusion in the
healthy control group were no history of CeVD or other
ocular and neurological diseases, with a normal fundus
and visual acuity.

Clinical Evaluation
All participants underwent an extensive ophthalmologic
examination, including habitual visual acuity testing with
a 6 m Snellen chart, slit-lamp biomicroscopy, fundus
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examination, fundus photography, and OCTA scans (Cirrus
5000, version 10.0; Zeiss Meditec, California, United States).
All ophthalmological examinations were performed by a single
well-trained clinician. For the visual acuity measurements,
the refractive correction was used with the patient’s own
spectacles under a chart luminance about 160 cd m−2.
The standard termination rule is when a patient makes
four or more mistakes on a line of five letters. Intraocular
pressure measurement with Goldmann applanation tonometry,
gonioscopy, and visual field testing by standard automated
perimetry (SAP, Humphrey Field Analyzer; 30-2 Swedish
interactive threshold algorithm; Carl Zeiss Meditec, Jena,
Germany) were only considered to exclude suspected
glaucoma or other retinopathy. The axial length measurement
was only considered to exclude myopia (<-6 diopter)
or microphthalmia.

All patients with CeVD were tested with computerized
tomography scans and magnetic resonance imaging scans. The
common carotid artery (CCA), ICA, and ophthalmic artery (OA)
blood velocities were determined in some CeVD patients who
agreed and were able to undergo bilateral 2 MHz transcranial
doppler ultrasound (DWL, Doppler Box, Singen, Germany).
The transcranial doppler ultrasound was performed by one
experienced neurophysiology technician. Peak systolic velocity
and mean velocity were recorded in cm/s.

OCTA Acquisition and Processing
Optical coherence tomography angiography imaging was
performed using a high-definition OCT and AngioPlex
device (Cirrus 5000, version 10.0; Zeiss Meditec, California,
United States) as described previously (Xiao et al., 2020a,b;
Zhang et al., 2020). Briefly, an optic disk cube 200 × 200
scan mode was used for the pRNFL measurements, a macular
cube with 512 × 128 scan mode was used to determine the
macular thickness and GC-IPL thickness measurements, and
angiography imaging was conducted centered at the macula with
the 6 × 6 mm scan pattern (Figure 2A).

Peripapillary retinal nerve fiber layer thickness was measured
using 3.46 mm diameter circles around the optic disk. The
average pRNFL thickness and the thicknesses of the four-
quadrant sectors (superior, temporal, inferior, and nasal) were
analyzed. The GC-IPL thickness parameters evaluated were the
average thickness within a 14.13 mm2 elliptical annular area
region and the thicknesses in six quadrant sectors (superior,
temporal-superior, temporal-inferior, inferior, nasal-inferior, and
nasal-superior). Angiography scans were analyzed using Cirrus
OCTA software (AngioPlex, version 10.0; Carl Zeiss Meditec).
VD was calculated from the total length of perfused vasculature
per unit area in a region of measurement, while PD was
calculated from the total area of perfused vasculature per unit
area in a region of measurement. The central foveal region
was a region with a diameter of 1 mm, and the inner and
outer rings had outer diameters of 3 and 6 mm, respectively.
The VD and PD values of the nine quadrant sectors, the
central, inner, and outer rings and the whole area were
analyzed. The VD, PD and the foveal avascular zone (FAZ)
of the superficial capillary plexus (SCP) were automatically

measured by the in-built software from Carl Zeiss Meditec
using optical microangiography algorithms. The software only
calculates values for the SCP, which spans from the internal
limiting membrane to the inner plexiform layer. The absence
of motion artifacts was defined as no vessel doubling, vessel
discontinuity/misalignment or lateral vessel displacement in the
OCTA image. Images with a signal strength <7 and those
with poor centration or segmentation errors were excluded
from data analysis.

Statistical Analyses
All statistical analyses were performed using software (SPSS, ver.
22.0; SPSS Inc., Chicago, IL, United States). The generalized
estimating equations (GEE) method was used to adjust for
age, gender, and the inter-eye correlation from the same
participant. Pearson’s correlation was used to assess the
associations between the OCTA parameters and the correlations
between the OCTA values, visual acuity, and transcranial
doppler values after testing using the GEE models. Logistic
regression was employed to combine the diagnostic parameters
into composite diagnostic indices. The area under the receiver
operating characteristic curve (AUC) was used to calculate the
diagnostic power of the diagnostic parameters. To compare
the diagnostic capabilities of the parameters, the AUCs were
compared using the method described by DeLong and colleagues
(DeLong et al., 1988). A P value < 0.05 was considered
statistically significant.

Data Availability
The data that support the findings of this study is available from
the corresponding author upon reasonable request.

RESULTS

Demographic Data
In total, the study enrolled 238 eyes of 121 subjects with CeVD
and 57 eyes of 44 healthy controls in the final analysis (Figure 1).
The age of the CeVD subjects was 56.00 ± 11.27y (mean ± SD),
and the age of the healthy controls was 53.17 ± 7.29y
(mean ± SD). Among the participants included in the final
analysis, the causes of CeVD were intracranial hemorrhage (41
subjects; 79 eyes) and cerebral ischemia (80 subjects; 159 eyes).
Table 1 shows the baseline characteristics of the study population.

Patterns of Loss in Retinal Structure and
Microvasculature
The structural and microvascular parameters were evaluated
using GEE models to adjust for age, sex, and within-subject inter-
eye correlations (Table 2). The CeVD group showed significant
thinning of the pRNFL at the temporal (P = 0.015) and nasal
quadrants (P = 0.004). At the macula, the thickness of the GC-
IPL was significantly reduced in the inferior quadrant in the
CeVD group (P = 0.028). In addition, the CeVD group showed
significantly reduced macular VD and PD compared with the
healthy controls in all nine quadrants (Figure 2B). No significant
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FIGURE 1 | Flow diagram of the study population.

differences were found in the whole macular thickness or the size
of FAZ between patients with CeVD and healthy controls.

Correlation Analysis Between OCTA,
Visual Function and Transcranial Doppler
Parameters
Since VD was strongly correlated with PD (r = 0.991, P< 0.0001),
VD was used as a representative microvasculature manifestation

in the following analysis. In CeVD, visual acuity was significantly
correlated with the average pRNFL thickness (r = 0.194,
P = 0.039). There was also a significant correlation between visual
acuity and the superior-outer quadrant of the VD (r = 0.276,
P = 0.018). No statistically significant correlations were found
between visual acuity and the thickness of GC-IPL or the size
of the FAZ area.

In addition, in 41 patients (33.9%) who finished the
transcranial doppler ultrasound examinations, the peak velocity
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TABLE 1 | Demographic data and clinical characteristics.

Parameter CeVD Healthy
controls

P value

Number of patients 121 44 –

Number of eyes 238 57 –

Age, mean (SD) 56.00 (11.27) 53.17 (7.29) 0.69

Sex, female:male* 93:28 25:19 <0.05

Habitual visual acuity, mean (SD) [Range] 0.55 (0.27)
[0.29–1.30]

0.98 (0.12)
[0.80–1.30]

<0.05

*Chi-square test, P value < 0.05 was considered to be
statistically significant.CeVD, cerebrovascular disease; SD, standard deviation.

of the CCA was significantly correlated with the central VD
(r = 0.423, P = 0.028, respectively). The peak velocity of the OA
was significantly correlated with superior quadrant of the pRNFL
(r = 0.351, P = 0.031). In addition, a significant correlation was
found between visual acuity and the peak velocity of the OA
(r = 0.412, P = 0.011).

Diagnostic Accuracy of OCTA
Parameters
The diagnostic capability of the OCTA parameters was calculated
by the AUCs. GEE models were used to adjust for age, sex, and
within-subject inter-eye correlations.

To discriminate CeVD from healthy controls, the structural
OCT parameters (pRNFL average thickness and GC-IPL average
thickness) combined with the macular angiography parameters
(central VD and whole VD) significantly improved the
diagnostic accuracy compared to only the structural parameters
(P < 0.0001). After selecting the specific quadrants of pRNFL
and GC-IPL with the best performance to replace the average
thicknesses, the structural OCT parameters (pRNFL average
thickness and temporal-superior quadrant thickness of GC-
IPL) combined with the macular angiography parameters were
the best discriminators between the CeVD and healthy control
groups, with a diagnostic accuracy of 0.918 (Figure 3 and
Table 3).

DISCUSSION

Exploration of retinal vessel abnormalities may facilitate early
detection for cerebrovascular events, and can potentially become
the main targets for preventive and treatment strategies in
CeVD (Pantoni, 2010). To the best of our knowledge, this
is the first study to employ OCTA to assess the patterns
of retinal structural and microvascular changes in patients
with CeVD (Rim et al., 2020). In our study cohort, the
patterns and severity of retinal structural and microvascular
losses differed significantly in patients with CeVD compared
with healthy controls. The patient group showed pRNFL
thinning that was more severe in the temporal and nasal
quadrants, and both VD and PD were significantly decreased
in all quadrants in comparison with healthy controls. As
expected, there was a significant correlation between visual
acuity, retinal structural and microvascular parameters and

TABLE 2 | Comparison of optical coherence tomography angiography parameters
between patients with CeVD and healthy controls.

OCTA Parameters CeVD versus healthy controls

CeVD, mean
(SD)

Healthy controls,
mean (SD)

Average pRNFL 96.51 (10.01)* 101.00 (7.78)

S pRNFL 121.26 (18.80) 124.46 (16.00)

T pRNFL 70.91 (12.50)* 77.54 (12.86)

I pRNFL 126.32 (20.35) 128.04 (18.55)

N pRNFL 67.60 (10.62)** 73.98 (15.78)

Whole macular thickness 248.62 (21.76) 244.90 (20.05)

Average GC-IPL 82.70 (7.78) 85.21 (5.92)

S GC-IPL 83.06 (9.18) 85.88 (6.36)

TS GC-IPL 81.92 (8.56) 83.04 (5.47)

TI GC-IPL 82.82 (8.23) 84.38 (5.79)

I GC-IPL 80.30 (8.25)* 83.65 (6.23)

NI GC-IPL 83.20 (7.81) 86.31 (6.19)

NS GC-IPL 85.17 (9.18) 87.92 (6.71)

Whole VD of superficial capillary plexus 16.37 (1.64)*** 18.09 (0.94)

Central VD 6.93 (2.96)** 8.81 (2.84)

Inner VD 16.21 (2.11)*** 18.19 (1.07)

Outer VD 16.79 (1.58)*** 18.40 (0.92)

Whole PD of superficial capillary plexus 0.3979
(0.0435)***

0.4433 (0.0254)

Central VD 0.1536
(0.0693)**

0.1966 (0.0653)

Inner VD 0.3842
(0.0537)***

0.4320 (0.0284)

Outer VD 0.4113
(0.0425)***

0.4559 (0.0256)

FAZ area of superficial capillary plexus 0.3057
(0.1199)

0.2868 (0.1131)

Signal quality 8.89 (0.99) 9.16 (0.82)

The comparison of OCTA parameters between patients with CeVD and healthy
controls was adjusted for age, sex, and within-subject inter-eye correlations.
OCTA values are presented as the mean [standard deviation (SD)]. pRNFL,
GC-IPL, and whole macular thicknesses are expressed in µm; VD and PD in
mm−1; and FAZ area in mm2. *p < 0.05; **p < 0.01; and ***p < 0.001.CeVD,
cerebrovascular disease; OCTA, optical coherence tomography angiography; SD,
standard deviation; pRNFL, peripapillary retinal nerve fiber layer; GC-IPL, ganglion
cell-inner plexiform layer; VD, vessel density; PD, perfusion density; FAZ, foveal
avascular zone; S, superior; T, temporal; I, inferior; N, nasal; TI, temporal-inferior;
TS, temporal-superior; NI, nasal-inferior; and NS, nasal-superior.

transcranial doppler parameters in the CeVD group. Although
our study should be interpreted as a proof-of-concept requiring
independent validation in other patient groups, our data indicate
the discrimination capability of OCTA with the identification
of specific patterns of loss in the retinal structure and
microvasculature of CeVD.

We are not aware of any study that has investigated retinal
vascularization by measuring vascular density using OCTA
in patients with CeVD. Wong and colleagues found that
any retinal abnormalities, including arteriovenous nicking, was
associated with incident stroke based on the retinal vessel
caliber from fundus photographs (Wong et al., 2001). Consistent
with microvascular pathology, these retinal abnormalities are
likely associated with various markers of inflammation (such
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FIGURE 2 | Retinal structural and microvasculature measurements. (A) Diagram of peripapillary and macular measurements using OCTA. Peripapillary retinal nerve
fiber layer thickness was divided into four sectors, macular ganglion cell-inner plexiform layer thickness was divided into six sectors and macular microvasculature
was divided into nine sectors. (B) Topographic damage in CeVD eyes. The thickness of the pRNFL was significantly reduced in the temporal and nasal quadrants,
while the thickness of the GC-IPL was significantly reduced in the inferior quadrant. The CeVD group showed significantly reduced macular vessel density and
perfusion density in all nine quadrants compared with the healthy controls. Macular microvasculature was measured in the superficial capillary plexus. Abbreviations:
CeVD, cerebrovascular disease; S, superior; T, temporal; I, inferior; N, nasal; TS, temporal-superior; TI, temporal-inferior; NS, nasal-superior; NI, nasal-inferior; SO,
superior-outer; TO, temporal-outer; IO, inferior-outer; NO, nasal-outer; SI, superior-inner; TI, temporal-inner; II, inferior-inner; NI, nasal-inner; and C, central.

FIGURE 3 | Diagnostic accuracy of optical coherence tomography angiography parameters in discriminating patients with cerebrovascular disease. AUC for average
pRNFL + average GC-IPL = 0.590; AUC for average pRNFL + average GC-IPL + central VD + whole VD = 0.913; and AUC for average pRNFL + TS
GC-IPL + central VD + whole VD = 0.918. Abbreviations: AUC, area under the curve; pRNFL, peripapillary retinal nerve fiber layer; GC-IPL, ganglion cell-inner
plexiform layer; VD, vessel density; and TS, temporal-superior.
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TABLE 3 | Diagnostic ability of optical coherence tomography angiography parameters in distinguishing between patients with CeVD and healthy controls.

Diagnostic parameters Average
pRNFL + average

GC-IPL

Average pRNFL + average
GC-IPL + central
VD + whole VD

Average pRNFL + TS
GC-IPL + central
VD + whole VD

AUC (95% CI) 0.59 (0.485∼0.695) 0.913 (0.857∼0.969) 0.918 (0.863∼0.972)

P values – <0.0001 0.5019

Sensitivity Specificity Correct indices 0.610 0.586 0.196 0.792 0.951 0.743 0.831 0.927 0.758

P values were evaluated with the AUC on the left. The diagnostic parameters to differentiate patients with CeVD from healthy controls were derived from the
logistic regression.CeVD: cerebrovascular disease; AUC: area under the curve; CI: confidence interval; pRNFL: peripapillary nerve fiber layer; GC-IPL: ganglion cell-inner
plexiform layer; TS: temporal-superior; and VD: vessel density.

as white blood cell count and fibrinogen concentration)
and endothelial dysfunction (such as the concentrations of
von Willebrand factor and factor VIII; Wong et al., 2001).
Furthermore, a wider retinal venular caliber predicted an
increased risk of incident stroke, independent of traditional
stroke risk factors, in a meta-analysis of 20,798 participants
without diabetes (McGeechan et al., 2009). In addition, a
reduction in retinal vascular fractal dimension and increased
vascular tortuosity, quantified by several global geometrical
parameters, have been associated with an increased risk
of local ischemia (Lammie, 2002; Tomita et al., 2005).
Looking at the current body of evidence, retinal microvascular
lesions, including retinal vessel narrowing and widening
secondary to subtle microvascular dysfunction, could be
manifestations of persistent microvascular damage affecting the
general vasculature, with important implications for cerebral
circulation and CeVD risks.

In our study, the decreased retinal vascular density in
patients with CeVD could, therefore, be explained by the
impairment of the general vasculature. However, our study
should carefully interpreted within patients who only suffers
from CeVD. The efficacy of OCTA examinations still needs
to be proved in a clinical setting, as a number of elderly
people are susceptible to co-morbidities as well as the associated
neuroinflammation which may easily lead to more extensive
and severe retinal changes (Buga et al., 2013; Sandu et al.,
2015). Further research with repeated measurements over a
longer follow-up period is needed to provide more detailed
information about the changes in OCTA metrics in CeVD
patients with co-morbidities such as obesity, hypertension,
diabetes, and age-associated retinal pathologies. In addition,
larger case series are needed to investigate whether OCTA
parameters bring additional predictive value to existing CeVD
disease risk scores. Furthermore, the present data of visual acuity
should be further improved, as logMAR (log of the Minimum
Angle of Resolution) charts have been widely recognized for
providing much more reliable and discriminative visual acuity
measurements than Snellen charts. If our findings can be
confirmed, individuals who are found to have lower retinal
VD with OCTA might benefit from more stringent monitoring
and therapeutic protection to reduce future vascular-related
morbidity and mortality.

In summary, we showed quantitative retinal structure
and microvasculature parameters could prove useful disease
biomarkers for CeVD. Future work will confirm whether

CeVD is indeed associated with specific patterns of loss
and how the observed abnormalities in the structure and
microvasculature of the retina relate to an individual’s overall
microvascular status, in particular the risk of a debilitating
cerebrovascular event.
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