16 research outputs found

    Recent advances of nanofluids in micro/nano scale energy transportation

    Get PDF
    As the continuing integration and size deflation of component dimensions in electronic circuits and increase in the number of transistors in modern microprocessor chips, especially for heat dissipation of micro/nano scale devise, traditionally used single phase fluid cannot meet the requirements for highly efficient heat transfer, which thus frequently results in the damage of electrical devices. Consequently, thermal conductivity enhancement of working fluids is of great significance for advanced thermal energy conservation and conversion. Nanofluids, which possess a superior thermal conductive performance, are studied towards an alternative to the traditionally used working fluids, have attracted ample attention within the past decades. In this paper, firstly, we summarized the recent progress in the preparation of nanofluids, in particular for a method involving a covalent concerning reorganization or generation; subsequently, the utilization of nanofluids in hitherto unsummerized micro/nano scale heat and mass transfer fields, especially for some chemistry relating applications were discussed. All works demonstrated in this review are aiming at clarifying the fact that advanced material technologies are required in preparation of recent nanofluids on the premise of continuing harsh energy transfer situation; on the other hand, nanofluids were also able to offer insights for novel micro/nano scale energy transportation which has not yet been reviewed before

    Integrated transcriptomic and proteomic analysis reveals potential targets for heart regeneration

    Get PDF
    Research on the regenerative capacity of the neonatal heart could open new avenues for the treatment of myocardial infarction (MI). However, the mechanism of cardiac regeneration remains unclear. In the present study, we constructed a mouse model of heart regeneration and then performed transcriptomic and proteomic analyses on them. Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Gene Set Enrichment Analysis (GSEA) of differentially expressed genes (DEGs) were conducted. Western blot (WB) and qPCR analyses were used to validate the hub genes expression. As a result, gene expression at the mRNA level and protein level is not the same. We identified 3186 DEGs and 42 differentially expressed proteins (DEPs). Through functional analysis of DEGs and DEPs, we speculate that biological processes such as ubiquitination, cell cycle, and oxygen metabolism are involved in heart regeneration. Integrated transcriptomic and proteomic analysis identified 19 hub genes and Ankrd1, Gpx3, and Trim72 were screened out as potential regulators of cardiac regeneration through further expression verification. In conclusion, we combined transcriptomic and proteomic analyses to characterize the molecular features during heart regeneration in neonatal mice. Finally, Ankrd1, Gpx3, and Trim72 were identified as potential targets for heart regeneration therapy

    Processing Optimization of Shear Thickening Fluid Assisted Micro-Ultrasonic Machining Method for Hemispherical Mold Based on Integrated CatBoost-GA Model

    No full text
    Micro-electro-mechanical systems (MEMS) hemispherical resonant gyroscopes are used in a wide range of applications in defense technology, electronics, aerospace, etc. The surface roughness of the silicon micro-hemisphere concave molds (CMs) inside the MEMS hemispherical resonant gyroscope is the main factor affecting the performance of the gyroscope. Therefore, a new method for reducing the surface roughness of the micro-CM needs to be developed. Micro-ultrasonic machining (MUM) has proven to be an excellent method for machining micro-CMs; shear thickening fluids (STFs) have also been used in the ultra-precision polishing field due to their perfect processing performance. Ultimately, an STF-MUM polishing method that combines STF with MUM is proposed to improve the surface roughness of the micro-CM. In order to achieve the excellent processing performance of the new technology, a Categorical Boosting (CatBoost)-genetic algorithm (GA) optimization model was developed to optimize the processing parameters. The results of optimizing the processing parameters via the CatBoost-GA model were verified by five groups of independent repeated experiments. The maximum absolute error of CatBoost-GA is 7.21%, the average absolute error is 4.69%, and the minimum surface roughness is reduced by 28.72% compared to the minimum value of the experimental results without optimization

    Ridesharing Problem with Flexible Pickup and Delivery Locations for App-Based Transportation Service: Mathematical Modeling and Decomposition Methods

    Get PDF
    App-based transportation service system, such as Uber and Didi, has brought a new transportation mode to users, who are able to make reservations using mobile apps conveniently. However, one of the fundamental challenges in app-based transportation system is the inefficiency and unreliability of the vehicle routing plans caused by complex topology of urban road network and unpredictable traffic conditions. A common way to tackle this problem is repositioning pickup or delivery locations via the coordination between drivers and passengers. This paper studies an on-demand ridesharing problem that determines the optimal ride-share matching strategy and vehicle routing plan with respect to flexible pickup and delivery locations. By introducing the concept of space-time windows, the problem is formulated as the pickup and delivery problem with space-time windows (PDPSW) in space-time network. To solve the model efficiently and accurately, we particularly develop a customized solution approach based on Lagrangian relaxation. Numerical examples are conducted to demonstrate the performance of the proposed framework and draw some managerial insights into the optimal system operation. The results indicate that adopting the serving strategy of flexible pickup and delivery locations will evidently reduce the system cost and improve the service quality in app-based transportation service systems

    Noncontrast Computed Tomography Markers Associated with Hematoma Expansion: Analysis of a Multicenter Retrospective Study

    No full text
    Background: Hematoma expansion (HE) is a significant predictor of poor outcomes in patients with intracerebral hemorrhage (ICH). Non-contrast computed tomography (NCCT) markers in ICH are promising predictors of HE. We aimed to determine the association of the NCCT markers with HE by using different temporal HE definitions. Methods: We utilized Risa-MIS-ICH trial data (risk stratification and minimally invasive surgery in acute intracerebral hemorrhage). We defined four HE types based on the time to baseline CT (BCT) and the time to follow-up CT (FCT). Hematoma volume was measured by software with a semi-automatic edge detection tool. HE was defined as a follow-up CT hematoma volume increase of >6 mL or a 33% hematoma volume increase relative to the baseline CT. Multivariable regression analyses were used to determine the HE parameters. The prediction potential of indicators for HE was evaluated using receiver-operating characteristic analysis. Results: The study enrolled 158 patients in total. The time to baseline CT was independently associated with HE in one type (odds ratio (OR) 0.234, 95% confidence interval (CI) 0.077–0.712, p = 0.011), and the blend sign was independently associated with HE in two types (OR, 6.203–6.985, both p p p = 0.004), a sensitivity of 38.9%, and specificity of 96.0%. Conclusion: In specific subtypes, the time to baseline CT, blend sign, and heterogeneous density were independently associated with HE. The association between NCCT markers and HE is influenced by the temporal definition of HE. Heterogeneous density is a stable and robust predictor of HE in different subtypes of hematoma expansion

    Experimental Study on a Superstable Nano-TiO<sub>2</sub> Deep Eutectic Solvent Nanofluid for Solar Energy Harvesting

    No full text
    Nanofluids have emerged as an important working fluid for various heat transfer and thermal energy transportation demands thanks to its promising thermal conductivity. While, poor static stability brought by segregation of nanoparticle heavily hinders its wide practical utilization. In this work, a novel “one-pot one-step” strategy was realized to generate a superior stable nanofluid which can stand uneventfully for at least 2 months without observation of any sedimentation with tetrabutyl titanate as a TiO2 precursor in glycerol/chlorine chloride deep eutectic solvents. Mechanism study reveals that the good stability of this nanofluid is mainly attributed to in situ formation protocol for which the inherent aggregation of TiO2 can be theoretically avoided. Meanwhile, thermophysical properties, such as viscosity, thermal conductivity, and rheological behavior, were comprehensively studied, which indicates that the obtained nanofluids exhibit a non-Newtonian shear thinning fluid behavior with a thermal conductivity enhancement ratio up to 9.0%. More importantly, photothermal conversion efficiency of the nanofluid could reach 51.2%, and the efficiency enhancement is 181.9% over the pristine deep eutectic solvents. This work paves a novel avenue for fabricating nanofluids with super static stability and gives a supplementary idea for “one-step” nanofluids preparation process

    Attenuated Salmonella carrying siRNA-PD-L1 and radiation combinatorial therapy induces tumor regression on HCC through T cell-mediated immuno-enhancement

    No full text
    Abstract Hepatocellular carcinoma (HCC), the most prevalent type of aggressive liver cancer, accounts for the majority of liver cancer diagnoses and fatalities. Despite recent advancements in HCC treatment, it remains one of the deadliest cancers. Radiation therapy (RT) is among the locoregional therapy modalities employed to treat unresectable or medically inoperable HCC. However, radioresistance poses a significant challenge. It has been demonstrated that RT induced the upregulation of programmed death ligand 1 (PD-L1) on tumor cells, which may affect response to PD-1-based immunotherapy, providing a rationale for combining PD-1/PD-L1 inhibitors with radiation. Here, we utilized attenuated Salmonella as a carrier to explore whether attenuated Salmonella carrying siRNA-PD-L1 could effectively enhance the antitumor effect of radiotherapy on HCC-bearing mice. Our results showed that a combination of siRNA-PD-L1 and radiotherapy had a synergistic antitumor effect by inhibiting the expression of PD-L1 induced by radiation therapy. Mechanistic insights indicated that the combination treatment significantly suppressed tumor cell proliferation, promoted cell apoptosis, and stimulated immune cell infiltration and activation in tumor tissues. Additionally, the combination treatment increased the ratios of CD4+ T, CD8+ T, and NK cells from the spleen in tumor-bearing mice. This study presents a novel therapeutic strategy for HCC treatment, especially for patients with RT resistance
    corecore