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App-based transportation service system, such as Uber and Didi, has brought a new transportation mode to users, who are able
to make reservations using mobile apps conveniently. However, one of the fundamental challenges in app-based transportation
system is the inefficiency and unreliability of the vehicle routing plans caused by complex topology of urban road network and
unpredictable traffic conditions. A common way to tackle this problem is repositioning pickup or delivery locations via the
coordination between drivers and passengers. This paper studies an on-demand ridesharing problem that determines the optimal
ride-share matching strategy and vehicle routing plan with respect to flexible pickup and delivery locations. By introducing the
concept of space-time windows, the problem is formulated as the pickup and delivery problemwith space-time windows (PDPSW)
in space-time network. To solve the model efficiently and accurately, we particularly develop a customized solution approach based
on Lagrangian relaxation. Numerical examples are conducted to demonstrate the performance of the proposed framework and
draw some managerial insights into the optimal system operation.The results indicate that adopting the serving strategy of flexible
pickup and delivery locations will evidently reduce the system cost and improve the service quality in app-based transportation
service systems.

1. Introduction

With the constant growth of urban size and population,
private car use has increased rapidly for its convenience,
flexibility, and comfort, which yet causes a series of traf-
fic and environment issues, such as congestion, park-
ing shortage, energy overconsumption, and air pollution.
The app-based transportation network and taxi compa-
nies (TNC), such as Uber, Lyft, and Didi, have rapidly
developed to provide the on-demand ridesharing ser-
vice that achieves the balance of transport mobility and
social benefit. For example, in 2017 the number of Uber
user reservations has reached 40 million per month and
Uber’s share of the United States ride hailing market is
77% (http://www.businessofapps.com/data/uber-statistics/).
In China, the number of TNC users is more than 150 million,
accounting for 22.3% of the netizens.

Different from the conventional taxi companies, TNC is
able to collect passengers’ reservations through smartphone
apps and quickly extract the detailed travel information, such
as the origin and destination locations and the corresponding
departure and arrival timewindows.The request information
is then converted into some task lists involving the specific
service schedules (i.e., visiting times and locations) and
routing path, which is then performed by a fleet of vehicles.
This new technology brings great convenience to passengers
but may incur a series of fleet management issues due to the
complex topology of urban road network and unpredictable
traffic conditions. Specifically, in some cases the pickup or
delivery locations of passengers may be spatially nearby but
topologically inaccessible or even temporally unreachable for
vehicles.This will cause extra detours of vehicles or long-time
waiting, which will apparently impact the efficiency of the
operation system and reduce the service quality.
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Figure 1: Illustration of pickup and delivery locations repositioning.

In practice, one intuitive way to tackle this problem is
repositioning pickup or delivery locations. In practice, the
spatial accessibility and flexibility of passengers are much
higher than that of vehicles within some local intersections or
road segments. Such as shown in Figure 1(a), location 1 (the
crossing of 168th St. and 88th Ave.) is the origin of passenger
as requested. Since the 168th St. is one-way to north, the
vehicle has to take a long detour to pick up the passenger,
which is shown as blue dashed line. Alternatively, the driver
will first coordinate the detailed pickup location with the
passenger after receiving the task schedule and sometimes
may reposition it to a new location that is easier to access.
For example, the passenger could be asked to walk a short
distance (shown as the green chain line) to the major road
and then picked up at location 2. Furthermore, to deliver
the passenger to the opposite side of S Halsted St., which is
shown as location 3 in Figure 1(b), the passenger could be first
dropped at location 4 and then walk to location 3 by crossing
the crosswalk or overpass. Otherwise, the vehicle has to turn
around at the crossing of SHalsted St. andWHarrison St. and
then take another U turn back to north. Since mainly based
on the drivers’ personal experience and not involved in the
whole system plan, such rescheduling operations are usually
unreliable and may seriously disturb the task schedules. This
is also one of the main limitations of the optimized vehicle
routing planning in practical applications.

From the system-wide operation perspective, slightly
repositioning the pickup and delivery locations of passengers
will somehow reduce the vehicle traveling cost and avoid the
risks of unexpected transportation delays. Besides, properly
adjusting the relative positions of these locations may also
increase the matching rate between vehicles and passengers.
In the best cases, passengers could be gathered to the same
pickup or delivery location and simultaneously served by one
vehicle.Therefore, a reliable and flexible vehicle routing strat-
egy for on-demand ridesharing service system is expected to
balance the service quality and system cost considering the
network complexity and operational dynamics.

Nevertheless, existing studies about the on-demand
ridesharing problem with flexible pickup and delivery loca-
tions are very few. Different from the ridesharing problem
with respect to developing the carpooling matching strategy,
the on-demand ridesharing problem is also known in the
literature as pickup and delivery problem with time windows
(PDPTW), which is a much more complicated problem due
to the complex coupling constraints among the vehicle rout-
ing, passenger assigning, and vehicle capacity limitations.
On the other hand, the concept of flexible serving strategies
is mostly introduced to classify and cluster the passengers
in matching procedure of carpooling problems. To best of
our knowledge, only a few of recent studies have made the
attempt to integrate the ride-share matching strategy and
vehicle dispatching plan with flexible pickup and delivery
locations for the on-demand ridesharing systems.

To bridge the research gap, this paper aims to develop a
mathematical model for the on-demand ridesharing opera-
tions with flexible pickup and delivery locations. By employ-
ing the space-time presentation and the concept of space-
timewindow, the problem is further formulated as the pickup
and delivery problem with space-time windows (PDPSW).
By this, an integer linear programming (ILP)model is further
proposed to simultaneously determine the optimal number
of dispatched vehicles, routing plan, and detailed serving
strategy, so as to minimize the fixed operation cost, vehi-
cle traveling cost, and passengers’ inconvenience cost with
respect to the space-time flow balance constraints, passenger
serving constraints, and vehicle capacity constraints.

Considering the complexity of the model, we present a
customized solution approach based on Lagrangian relax-
ation (LR) algorithm. Specifically, we dualize two set of cou-
pling constraints to separate two parts of the problem, i.e., the
ride-share matching strategy and vehicle routing operation,
by introducing different Lagrangian multipliers. The relaxed
model is then decomposed into two sets of subproblems that
can be seen as knapsack problem and shortest path problem,
respectively. To efficiently obtain a feasible solution adapting
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from the relaxed solution, a hybrid method is specially
developed based on greedy algorithm and dynamic pro-
gramming (DP). Eventually, a subgradient search is adopted
to iteratively update the feasible and relaxed solutions to
an acceptable tolerance of optimality gap. The performance
of the LR based solution algorithm is then demonstrated
through a multiscale experience comparing with that of
CPLEX, a widely used commercial solver. Besides, we can
also see from the sensitivity result that adopting the operation
strategy of flexible pickup and delivery locations significantly
reduces the system cost and yet guarantees the service
quality.

2. Literature Review

Ridesharing has been widely studied ever since the 1970s,
when carpooling attracted more and more attention for its
energy efficiency and environmental protection. Particularly
in recent years, the considerable improvement of communi-
cation capabilities and e-payment allow for a more accessible
and secure online ridesharing service provide by TNCs. A
systematic review can be seen in Furuhata et al. [1], where
a classification is provided to better understand the existing
ridesharing systems. Some key challenges are also introduced
in this paper to clarify the development of the area of
ridesharing problem and indicate the directions of future
studies.

Mathematically, the ridesharing problem can be for-
mulated as the PDPTW, or more specifically, the Dial-A-
Ride Problem (DARP) when transporting passengers. As a
generalized version of the vehicle routing problem (VRP), the
PDPTW aims at determining the optimal routs of vehicles
to satisfy the requests of pickup and delivery under the
limitation of vehicle capacities, corresponding timewindows,
and coupling constraints (Savelsbergh and Sol [2], Berbeglia
et al. [3], and Dumas et al. [4]). Since the VRP is a NP-
hard problem, the PDPTW is alsoNP-hard andmore difficult
to solve. Therefore, there are number of studies focusing
on developing efficient solution algorithms. Studies such as
Ropke and Pisinger [5], Li and Lim [6], Baldacci et al. [7],
Hosni et al. [8], Küçükoğlu and Öztürk [9], Hu and Chang
[10], and Mahmoudi and Zhou [11] all consider the general
PDPTW and provide customized heuristic or exact solution
approach to efficiently solve certain scales of the problem.
Hosni et al. [8] formulated the shared-taxi problem into a
mixed interprogram, in which an optimized taxi dispatching
strategy is designed to assign the passengers’ reservations
to a fleet of taxis with optimal routing plans. Furthermore,
a LR based solution approach was presented to solve the
problem efficiently with relatively small gaps comparing with
CPLEX. Despite using the similar algorithmic framework,
Mahmoudi and Zhou [11] decomposed the primal problem,
which is simplified by adopting the state-space-time network
representation, into a series of single PDPTWs. This allows a
forward DP solution algorithm to solve the subproblems effi-
ciently and accurately. Furthermore, a serious of numerical
studies were conducted to demonstrate the performance of
the proposed solution algorithm in solving the on-demand
ridesharing problem in large-scales.

On the other hand, many studies have been conducted on
ride-share matching problem that specially aims to improve
the matching rate between vehicles and passengers or satisfy
the passengers’ reservations with the minimum fleet size
(Brownstone and Golob [12], Ferrari et al. [13], Herbawi and
Weber [14], Xu et al. [15], Pelzer et al. [16], Stiglic et al. [17],
andMasoud and Jayakrishnan [18]). Herbawi andWeber [14]
considered the ride matching problem with time windows,
which optimizes the assignments of passengers to vehicles
with respect to the serving order and detailed visiting times
of passengers’ pickup and delivery locations. A genetic and
insertion based heuristic algorithmwas further proposed and
applied in real-time ride matching and iteratively improves
the solution quality according to the realistic data. Stiglic et
al. [17] introduced the concept of “meeting point” to increase
flexibility of pickup and delivery points of passengers. Then
a customized algorithm was designed and implemented to
optimally match the vehicles and passengers in large-scale
ridesharing system. The proposed modeling framework was
further performed in a simulation study to show the benefits
of adopting meeting point strategy in ridesharing systems.
It is worth noting that Tong et al. [19] developed a joint
optimization model to integrate the passenger-to-vehicle
assignment plan and the bus routing schedule design for
the customized bus service system. Based on the space-
time network modeling framework, they formulated the
proposed problem into a multicommodity network flow-
based optimization model. To improve the performance of
the proposed algorithm in solving large-scale instances of the
problem, an LR based algorithm framework was employed
to first reduce the solution space and then decomposed the
problem into two sets of subproblems. Besides, twonumerical
experiences are performed to present the performance of the
developed model and algorithm.

The rest of this paper is organized as follows. Section 3
presents the detail of the PDPSW that is further formulated
into an integer programming model. Then the LR based
solution algorithm is developed in Section 4. Section 5
presents a series of numerical experiments to demonstrate the
performance of the proposed solution approach and discuss
the experiment results in the system operation strategy
perspective. Section 6 concludes this paper and offers some
future research directions.

3. Problem Formulation

The framework of the proposed on-demand ridesharing
operations is shown in Figure 2. The application of mobile
Internet and apps allow the TNCs to collect the travel
plans from user reservations, which involve the detailed
location and corresponding picking up and delivery time
windows. According to these pieces of information, the walk-
in catchment area by each timestamp in the relevant time
windows can be obtained with respect to the topological
structure of urban network.Then, based on the practical traf-
fic conditions and regulations, the potential pickup/delivery
locations are further selected within these areas. Here, we
define the space-time window as the set that contains all
the potential locations at timestamps of the relevant time
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Figure 2: The framework of the on-demand ridesharing operations.

window.We consider that all the location-time pairs included
in the space-time windows can be potentially selected to
serve passengers. Therefore, the detailed vehicle-passenger
assignment and vehicle routing plans, which involve the exact
pickup and delivery locations and times of each passenger,
will be determined by the modeling and decomposition
method proposed in our study.

Furthermore, the detailed vehicle dispatching strategies
will be sent to the corresponding vehicles in the form of
task schedules and recommended routs, while sent to the
passengers in the form of serving plans through the app,
which involve the detailed pickup and delivery locations and
times.

In contrast to the PDPTW, the extension on spatial
dimension is considered in this study to further enhance
the efficiency and reliability of the on-demand ridesharing
system. To solve the on-demand ridesharing problem with
flexible pickup and delivery locations, the specified serving
plan is expected with respect to the dynamic spatiotemporal
reservations from passengers, limited vehicle capacity, and
minimum system cost. Therefore, we can see that the on-
demand ridesharing system proposed in our study is essen-
tially generalized to the flexible transit systems with virtual
stops since the former one aims to provide a more flexible
dispatching strategy to ensure the efficiency of the operation
system with respect to the complex topology of urban road
network and unpredictable traffic conditions. Nevertheless,
in some cases, passengerswhose space-timewindows (partly)
overlap each other could be gathered to the same pickup or
delivery location and simultaneously served by one vehicle,
which is a more general version comparing with the process
of classifying and clustering the passengers in matching
procedure of flexible transit systems.

Therefore, a completely new aspect is to simultaneously
determine the optimal locations and times for picking up
or delivering each passenger, which leads to obviously more
complex formulations with respect to the passenger serving
and vehicle dispatching plans. The adoption of space-time

network enables the physical transportation network to
integrate the vehicles’ space-time trajectories and passengers’
potential space-time distribution. In this regard, comparing
with some classical modeling methods for solving Dial-A-
Ride Problem (DRAP) (such as Baldacci et al. [7], Hosni et
al. [8], and Hu and Chang [10]), our formulation provides a
more explicit and compact modeling structure to represent
the passengers serving and vehicle dispatching plans without
adding the extra constraints, such as the subtour elimination
constraints, temporal constraints, and coupling constraints
between space and time related variables. This allows the
development of a computationally efficient Lagrangian relax-
ation solution approach that can solve the PDPSW to near-
optimum solutions.

In this section, we first introduce the PDPSW in Sec-
tion 3.1. Then a systematical introduction of the PDPSW
modeling framework with respect to the space-time net-
work representation is present in Section 3.2. Eventually,
Section 3.3 presents the model formulation of the PDPSW.

3.1. Description of PDPSW. We initially consider a directed
transportation network denoted by S = (I, L), where I
(indexed by 𝑖 and 𝑗) denotes the set of spatial nodes (such as
the intersections in road network) and L (indexed by (𝑖, 𝑗)) is
the set of links representing the road segments. Let sequential
set T = {𝑡0, 𝑡0 + 𝛿, . . . , 𝑡0 + (|T| − 1)𝛿} denote the time
horizon of the considered operation cycle, where t0 is the
initial timestamp and 𝛿 stands for the unit intervals between
each two adjacent timestamps. Note that the time horizon
in this study is assumed to be properly discretized so that
all the activities, such as the trips of passengers or vehicles,
can be considered starting at any timestamp and complete
within integer multiples of 𝛿. Figure 3 illustrates a 20 ∗ 20
grid network that denotes the transportation network and we
assume that the time horizon is [1, 16] and the unit interval𝛿 = 1. Each reservation of passenger is associated with the
origin and destination, which are denoted by 𝑖𝑂𝑝1 and 𝑖𝐷𝑝1 of
passenger 𝑝 ∈ P, respectively. We can see in Figure 3 that
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Figure 3: Illustration for PDPSW in spatial transportation network.

nodes 𝑖𝑂11 and 𝑖𝑂21 (marked as red dots), respectively, denote
the origins of passengers 1 and 2, while 𝑖𝐷11 and 𝑖𝐷21 (marked as
dark blue dots), respectively, represent the destination nodes
of passenger 1 and 2. As shown in Figure 3, we choose nodes𝑖𝑂𝑝2-𝑖𝑂𝑝5 that are topologically adjacent to 𝑖𝑂𝑝1 as the expanded
pickup nodes. Correspondingly, nodes 𝑖𝐷𝑝2-𝑖𝐷𝑝5 are selected as
the expanded delivery nodes with respect to 𝑖𝐷𝑝1. Then we
define the set that consists nodes 𝑖𝑂𝑝1-𝑖𝑂𝑝5 as the pickup space
window of passenger 𝑝 and denoted by I𝑂𝑝 , while 𝑖𝐷𝑝1-𝑖𝐷𝑝5 is
defined as the delivery space window and denoted by I𝐷𝑝 .
In PDPSW, passengers are supported to be picked up (or
delivered) at any nodes within the corresponding pickup
(or delivery) space windows. That is, within a predefined
maximum walking distance, a passenger can be served at
origin nodes or the nodes nearby. Moreover, each reservation
of passengers also contains a pair of preferred pickup and
delivery time windows with respect to the origin and desti-
nation nodes, which are denoted by sequential sets T𝑂𝑝 ⊆ T
and T𝐷𝑝 ⊆ T. As shown in Figure 3, the pickup time windows
of passenger 1 and 2 are, respectively, set as [1, 3] and [3, 5],
while the delivery time windows are [10, 12] and [13, 15].

After receiving the passengers’ reservations, a certain
number of vehicles (denoted by H and indexed by ℎ) are sent
out to pick up the passengers from one of their candidate
pickup nodes 𝑖𝑂𝑝𝑛 ∈ I𝑂𝑝 within the related pickup time window
T𝑂𝑝 and then deliver them to one of their candidate delivery
nodes 𝑖𝐷𝑝𝑛 ∈ I𝐷𝑝 within the related delivery time window
T𝐷𝑝 . Note that, in the PDPSW, passengers are supported to
share their ride with the others, which means that vehicles
can simultaneously serve multiple passengers during the
operation cycle under the limitation of vehicle capacity 𝐶ℎ
(ℎ ∈ H).

3.2. Space-TimeNetwork Representation. Space-time network
is able to explicitly depict and rigorously formulate the
spatiotemporal movement of commodities with compact
model formulations, and it has been widely used in many
transportation modeling studies (Kliewer et al. [20], Yang
and Zhou [21], Tong et al. [22], Zhen and Jing [23], Li et al.
[24], and Zhang et al. [25]). Since the PDPSW is essentially
the generalization of PDPTW and aims to simultaneously
determine the ride-share matching strategy and routing
schedules of vehicles within the space-time dimension, we
can formulate the PDPSW by using the space-time network
representation.

In particular, a space-time network can be obtained
by extending the space network on the time horizon. An
illustration example can be seen in Figure 4, where grid
network S in Figure 3 is partly shown as the x-y plane. Time
horizon T is shown as t-axis vertical on the x-y plane. Let
set G = (V,A) denote the space-time network, where V
(indexed by (𝑖, 𝑗)) is the set of space-time vertexes and A
(indexed by (𝑖, 𝑡, 𝑗, 𝑠)) is the set of space-time arcs. Based
on the space-time network, we can intuitively present the
passengers’ reservations by combining the space window
and time window. Specifically, we denote the pickup and
delivery space-time windows of passenger 𝑝 by set V𝑂𝑝 and
V𝐷𝑝 , which are shown as red and blue polygons in Figure 4.
Each space-time window contains all the candidate pickup
or delivery space-time vertexes. Considering the duration of
time that passengers spend to walk from the origin to the
extended pickup nodes, there is only the origin vertex at the
earliest timestamp in the pickup time window. As shown
in Figure 4, the red dots represent the origin vertexes of
passengers. To simplify the illustration, we here assume that it
takes passengers one time interval from origin node to all the
adjacent pickup nodes. Hence there are five potential pickup
vertexes from the second to the last timestamps in the pickup
time window (marked as orange and yellow dots). Similarly,
there is only the destination vertex (marked as dark blue
dotes) at the latest timestamp in delivery time window and
five potential pickup vertexes from the earliest to the second
last timestamps in the delivery time window.

To serve passengers 1 and 2, vehicle ℎ1 (𝐶ℎ1 ≥ 2) is sent
out to travel according to a feasible routing plan, which is
denoted by the space-time path marked as the green line in
Figure 4.We can see that ℎ1 initially picks up passengers 1 and
2 at space-time vertexes (𝑖𝑂13, 2) and (𝑖𝑂24, 4) and then delivers
passenger 1 when passing (𝑖𝐷13, 10) and eventually delivers
passenger 2 at (𝑖𝐷21, 13).
3.3. Model Formulations. Based on the constructed space-
time network, an ILP model is roughly formulated in this
section. The following assumptions are initially proposed to
focus the model on the essence of PDPSW.

Demand. All passengers’ reservations are considered to be
dynamic and deterministic. That is, all the reservations are
given before the operation cycle and cannot be canceled
or delayed. In this sense, the detailed serving schedule of
vehicles can be obtained based on the serving requests,
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Figure 4: Representation for PDPSW in space-time network.

i.e., the pickup and delivery space-time windows in the
formulation.

Space-TimeWindow.We assume that the pickup and delivery
requests of all the passengers are executable. It means that,
for each passenger, the time intervals between pickup and
delivery space-timewindows shall be no less than the vehicle’s
shortest traveling time along the fastest routing between the
closet pickup and delivery nodes.

Vehicle. To simplify the problem without generalization, the
vehicles are assumed to be identical; i.e., they have the same
capacity and no passengers is onboard at the beginning and
ending of the operation cycle.

Besides, for reader’s convenience, the major notations of
sets, parameters, and decision variables related to the model
formulation are listed below.

Sets and Parameters
A: set of space-time arcs in the space-time network,
indexed by (𝑖, 𝑡, 𝑗, 𝑠)
H: set of vehicles, indexed by ℎ
I: set of spatial transportation nodes, indexed by 𝑖 and𝑗
I𝑂𝑝 : pickup space window of passenger 𝑝
I𝐷𝑝 : delivery space window of passenger 𝑝
P: set of passengers, indexed by passenger 𝑝
P𝑂𝑝 : set of passengers whose departure time window
contains timestamp 𝑡

P𝐷𝑝 : set of passengers whose arrival time window
contains timestamp 𝑡
T: set of timestamps in the considered operation
cycle, indexed by 𝑡 and 𝑠
T𝑂𝑝 : pickup time window of passenger 𝑝
T𝐷𝑝 : delivery time window of passenger 𝑝
V𝑂𝑝 : pickup space-time window of passenger 𝑝
V𝐷𝑝 : delivery space-time window of passenger 𝑝𝐶ℎ: capacity of a vehicle ℎ𝑐𝑓: fixed cost of dispatching a vehicle𝑐𝑙𝑖𝑗: vehicle traveling cost through link (𝑖, 𝑗)
𝑐𝑂𝑝𝑖: inconvenience costs for picking up passenger 𝑝 at
pickup node 𝑖𝑐𝐷𝑝𝑖: inconvenience costs for delivering passenger 𝑝 at
delivery node 𝑖

Decision Variables

𝑊ℎ𝑝𝑖𝑡 : whether vehicle ℎdrops off passenger𝑝 at space-
time vertex (𝑖, 𝑡)𝑋ℎ𝑖𝑡𝑗𝑠: whether vehicle ℎ travels through space-time arc(𝑖, 𝑡, 𝑗, 𝑠)𝑌ℎ: whether vehicle ℎ is used𝑍ℎ𝑝𝑖𝑡 : whether vehicle ℎ picks up passenger 𝑝 at space-
time vertex (𝑖, 𝑡)
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Based on the above assumptions, themathematicalmodel
for PDPSW is formulated as follows.We first propose a series
of systemic constraints, such as the space-time flow bal-
ance constraints, passenger serving constraints, and vehicle
capacity constraints. Then, the objective function, which is
essentially a summation of all cost components, is further
developed.

Space-Time Flow Balance Constraints. To precisely capture the
space-time path of each vehicle, we initially introduce the
space-time flow balance constraints:

∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

𝑋ℎ𝑖𝑡𝑗𝑠

− ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

𝑋ℎ𝑗𝑠𝑖𝑡
{{{{{{{{{
= 𝑌ℎ, (𝑖, 𝑡) = (𝑖𝑂, 𝑡𝑂) ,= −𝑌ℎ, (𝑖, 𝑡) = (𝑖𝐷, 𝑡𝐷) ,= 0, otherwise,

∀ℎ ∈ H,

(1)

where binary variables X fl {𝑋ℎ𝑖𝑡𝑗𝑠}ℎ∈H,(𝑖,𝑡,𝑗,𝑠)∈A and Y fl{𝑌ℎ}ℎ∈H determine the space-time path of vehicles and the
selection of vehicles, respectively. Specifically, 𝑋ℎ𝑖𝑡𝑗𝑠 = 1 if
and only if space-time arc (𝑖, 𝑡, 𝑗, 𝑠) is involved in the space-
time path of vehicle ℎ and 𝑌ℎ = 1 if and only if vehicleℎ is dispatched to serve passengers. Note that space-time
vertexes (𝑖𝑂, 𝑡𝑂) and (𝑖𝐷, 𝑡𝐷) are defined as the dummy origin
and destination vertexes of all the vehicles, respectively. We
assume that the distance and travel time from dummy origin
to any physical space-time vertex are 0 and infinity the other
way round, while those from physical space-time vertexes
to dummy destination are 0 and also infinity the other way
round.

Passenger Serving Constraints. For any TNC, fulfilling all
the reservations of the passengers is actually critical for
guaranteeing the serving quality. Therefore, we assume that
the proposed PDPSW formulation is based on the undersat-
urated condition. That is, the total fleet size is assumed to be
sufficient for serving all the passengers.Wedefine binary vari-
ables Z fl {𝑍ℎ𝑝𝑖𝑡 }ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V𝑂𝑝 and W fl {𝑊ℎ𝑝𝑖𝑡 }ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V𝐷𝑝
to denote the passenger serving plan, i.e., 𝑍ℎ𝑝𝑖𝑡 = 1 if and
only if vehicle ℎ picks up passenger 𝑝 at pickup space-time
vertex (𝑖, 𝑡) and 𝑊ℎ𝑝𝑖𝑡 = 1 if and only if vehicle ℎ deliver
passenger 𝑝 at delivery space-time vertex (𝑖, 𝑡). Thus, the
following constraints are proposed to guarantee that all the
passengers’ reservations are fulfilled:

∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝑂𝑝

𝑍ℎ𝑝𝑖𝑡 = 1, ∀𝑝 ∈ P, (2)

∑
(𝑖,𝑡)∈V𝑂𝑝

𝑍ℎ𝑝𝑖𝑡 = ∑
(𝑖,𝑡)∈V𝐷𝑝

𝑊ℎ𝑝𝑖𝑡 , ∀𝑝 ∈ P, ℎ ∈ H (3)

where constraints (2) ensure that each passenger is picked up
by a vehicle and constraints (3) impose that passenger 𝑝 is
delivered by vehicle ℎ if 𝑝 is previously picked up by it.

Moreover, constraints (4) and (5) are proposed to build
the relationship between the vehicle routing plan and passen-
ger serving strategy.

𝑍ℎ𝑝𝑖𝑡 − ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

𝑋ℎ𝑖𝑡𝑗𝑠 ≤ 0,
∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝑂𝑝 ,

(4)

𝑊ℎ𝑝𝑖𝑡 − ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

𝑋ℎ𝑗𝑠𝑖𝑡 ≤ 0,
∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝑂𝑝 ,

(5)

In particular, constraints (4) indicate that passenger 𝑝 is
picked up by ℎ from space-time vertex (𝑖, 𝑡) if and only if (𝑖, 𝑡)
is visited by ℎ, while constraints (5) require that vehicle ℎ
delivers passenger 𝑝 to space-time vertex (𝑖, 𝑡) if and only if(𝑖, 𝑡) is involved in the routing path of ℎ.
Remark 1. Note that to ensure the service quality, which
is regarded as the highest priority of most TNCs, all the
reservations of passengers are required to be satisfied and
thus the fleet size is assumed to be sufficient though only part
of them is eventually sent out with respect to the optimized
vehicle dispatching strategy. In practice, the fleet size will
be set the same as the number of reservations (shown as
Section 5).Then during the iteration of our LR algorithm (see
Section 4 for details), part of the vehicles will be saved as the
optimization result of vehicle-passenger assignment plan and
vehicle routing plan. Even though we do acknowledge that,
with limited vehicles (especially the total number of vehicles
is less than the number of passengers’ reservations), it may be
difficult to find feasible solutions in PDPSW with respect to
the passengers fulfilling constraints.

Vehicle Capacity Constraints. Different from carpooling
or customized vanpooling service design, the on-demand
ridesharing system allows vehicles to pick up and deliver
passengers at any time and the seats are not fixed to any
specific passenger during the operation cycle. Therefore, for
each vehicle, the capacity constraints are needed at each
timestamp; i.e.,
𝑡∑
𝑡󸀠=1

∑
𝑝∈P𝑂
𝑡󸀠

∑
𝑖∈I:(𝑖,𝑡󸀠)∈V𝑂𝑝

𝑍ℎ𝑝
𝑖𝑡󸀠
− 𝑡∑
𝑡󸀠=1

∑
𝑝∈P𝐷
𝑡󸀠

∑
𝑖∈I:(𝑖,𝑡󸀠)∈V𝐷𝑝

𝑊ℎ𝑝
𝑖𝑡󸀠
≤ 𝐶ℎ,

∀ℎ ∈ H, 𝑡 ∈ T

(6)

where P𝑂𝑡 denotes the set of passengers whose departure time
window contains timestamp 𝑡, while P𝐷𝑡 denotes the set of
passengers whose arrival time window contains timestamp 𝑡.
Then we can see that∑𝑡𝑡󸀠=1∑𝑝∈P𝑂

𝑡󸀠
∑𝑖∈I:(𝑖,𝑡󸀠)∈V𝑂𝑝 𝑍ℎ𝑝𝑖𝑡󸀠 denotes the

number of passengers that are picked up by vehicle ℎ by the
time of 𝑡󸀠, while ∑𝑡𝑡󸀠=1∑𝑝∈P𝐷

𝑡󸀠
∑𝑖∈I:(𝑖,𝑡󸀠)∈V𝐷𝑝 𝑊ℎ𝑝𝑖𝑡󸀠 is the number

of passengers that are delivered by vehicle ℎ by the time of 𝑡󸀠.
The difference between them is the number of passengers on
board by the time of 𝑡󸀠, which shall be no bigger than 𝐶ℎ.



8 Journal of Advanced Transportation

Besides, the following constraints are further added to
postulate binary variable values.

𝑋ℎ𝑖𝑡𝑗𝑠 ∈ {0, 1} , ∀ℎ ∈ H, (𝑖, 𝑡, 𝑗, 𝑠) ∈ A, (7)

𝑌ℎ ∈ {0, 1} , ∀ℎ ∈ H, (8)

𝑍ℎ𝑝𝑖𝑡 ∈ {0, 1} , ∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝑂𝑝 , (9)

𝑊ℎ𝑝𝑖𝑡 ∈ {0, 1} , ∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝐷𝑝 , (10)

Objective Function. The objective of PDPSW is to determine
the optimal ride-share matching strategy and vehicle routing
plan to balance the total system cost and serving quality. In
our study, the objective function contains three parts. The
first part is the fixed cost for dispatching vehicles. It can be
considered as a summation of amortized cost of vehicles and
hiring cost of drivers per operation cycle; i.e.,

𝐶𝐹 = ∑
ℎ∈H
𝑐𝑓𝑌ℎ, (11)

where 𝑐𝑓 denotes the fixed cost of dispatching a vehicle. The
second part refers to the vehicle routing cost; i.e.,

𝐶𝑇 = ∑
ℎ∈H

∑
(𝑖,𝑡,𝑗,𝑠)∈A

𝑐𝑙𝑖𝑗𝑋ℎ𝑖𝑡𝑗𝑠, (12)

where 𝑐𝑙𝑖𝑗 represents the vehicle traveling cost through link(𝑖, 𝑗).
The last part is the passenger inconvenience cost; i.e.,

𝐶𝑃 = ∑
𝑝∈P
∑
ℎ∈H
( ∑
(𝑖,𝑡)∈V𝑂𝑝

𝑐𝑂𝑝𝑖𝑍ℎ𝑝𝑖𝑡 + ∑
(𝑖,𝑡)∈V𝐷𝑝

𝑐𝐷𝑝𝑖𝑊ℎ𝑝𝑖𝑡 ) , (13)

where 𝑐𝑂𝑝𝑖 is the inconvenience cost for picking up passenger𝑝 at pickup node 𝑖, while 𝑐𝐷𝑝𝑖 denotes the inconvenience
cost for delivering passenger 𝑝 at delivery node 𝑖. Note
that CP essentially indicates the cost of poor service quality.
In PDPSW, though all the passengers are served within
the corresponding space-time windows, it yet causes the
decline of service level if passengers are not picked up or
delivered passengers at the origin pickup or delivery space-
time vertexes. An example can be seen in Figure 4, the
service of picking up passengers 1 and 2, and delivering
passenger 1 will all incur the passenger inconvenience cost,
while delivering passenger 2 will not cause such cost since
he/she is delivered right at the origin delivery space-time
vertex (𝑖𝐷21, 13).

Note that CF, CT, and CP are all determined by the
vehicle-passenger assignment and vehicle routing plans, so
these cost components shall generally exhibit the following
tradeoffs. Increasing the vehicle dispatching cost shall bring
down the number of vehicles dispatched to serve passengers
but increase the vehicle routing cost and passenger incon-
venience cost. The higher inconvenience cost, which though
raises the service quality, will force the vehicles to pick up

and deliver the passengers at the origin and destination as
early as possible. This will somehow decrease the matching
rate betweenpassengers and vehicles.Thus,more vehicleswill
be required to fulfill the passengers with extra detour, which
eventually raises the vehicle dispatching and routing costs.
In order to quantitatively solve the PDPSTW, the following
integer programming model is formulated:

min
X,Y,Z

∑
ℎ∈H
𝑐𝑓𝑌ℎ + ∑

ℎ∈H
∑
(𝑖,𝑡,𝑗,𝑠)∈A

𝑐𝑙𝑖𝑗𝑋ℎ𝑖𝑡𝑗𝑠
+ ∑
𝑝∈P
∑
ℎ∈H
( ∑
(𝑖,𝑡)∈V𝑂𝑝

𝑐𝑂𝑝𝑖𝑍ℎ𝑝𝑖𝑡 + ∑
(𝑖,𝑡)∈V𝐷𝑝

𝑐𝐷𝑝𝑖𝑊ℎ𝑝𝑖𝑡 )
(14)

s.t. ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

𝑋ℎ𝑖𝑡𝑗𝑠

− ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

𝑋ℎ𝑗𝑠𝑖𝑡
{{{{{{{{{
= 𝑌ℎ, (𝑖, 𝑡) = (𝑖𝑂, 𝑡𝑂) ,= −𝑌ℎ, (𝑖, 𝑡) = (𝑖𝐷, 𝑡𝐷) ,= 0, otherwise,

∀ℎ ∈ H,

(15)

𝑍ℎ𝑝𝑖𝑡 − ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

𝑋ℎ𝑖𝑡𝑗𝑠 ≤ 0,
∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝑂𝑝 ,

(16)

𝑊ℎ𝑝𝑖𝑡 − ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

𝑋ℎ𝑗𝑠𝑖𝑡 ≤ 0,
∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝑂𝑝 ,

(17)

∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝑂𝑝

𝑍ℎ𝑝𝑖𝑡 = 1, ∀𝑝 ∈ P, (18)

∑
(𝑖,𝑡)∈V𝑂𝑝

𝑍ℎ𝑝𝑖𝑡 = ∑
(𝑖,𝑡)∈V𝐷𝑝

𝑊ℎ𝑝𝑖𝑡 , ∀𝑝 ∈ P, ℎ ∈ H (19)

𝑡∑
𝑡󸀠=1

∑
𝑝∈P𝑂
𝑡󸀠

∑
𝑖∈I:(𝑖,𝑡󸀠)∈V𝑂𝑝

𝑍ℎ𝑝
𝑖𝑡󸀠
− 𝑡∑
𝑡󸀠=1

∑
𝑝∈P𝐷
𝑡󸀠

∑
𝑖∈I:(𝑖,𝑡󸀠)∈V𝐷𝑝

𝑊ℎ𝑝
𝑖𝑡󸀠

≤ 𝐶ℎ, ∀ℎ ∈ H, 𝑡 ∈ 𝑇
(20)

𝑋ℎ𝑖𝑡𝑗𝑠 ∈ {0, 1} , ∀ℎ ∈ H, (𝑖, 𝑡, 𝑗, 𝑠) ∈ A, (21)

𝑌ℎ ∈ {0, 1} , ∀ℎ ∈ H, (22)

𝑍ℎ𝑝𝑖𝑡 ∈ {0, 1} , ∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝑂𝑝 , (23)

𝑊ℎ𝑝𝑖𝑡 ∈ {0, 1} , ∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V𝐷𝑝 , (24)

4. Lagrangian Relaxation-Based
Solution Approach

The PDPSW proposed in Section 3.3 is a NP-hard problem
since PDPTW is essentially its special case, let alone the
two sets of coupling constraints (16) and (17). Therefore, for
relatively large-scale instances, it is difficult to solve themodel
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to optimum using commercial integer programming solvers
(e.g., CPLEX) or exact solution approaches (e.g., branch
and bound). To tackle this challenge, a customized solution
approach based on LR is proposed to solve the problem
efficiently with a near-optimum solution.

In the following content, Section 4.1 proposes a LR based
decomposing approach to obtain the lower bound to the
optimal value of primal problem (14)–(24). Basically, by
relaxing hard constraints (16) and (17), we decompose the
problem into two sets of subproblems that can be easily
solved. However, since the relaxed solution is likely infeasible
to the primal problem, yet acting as the lower bound, a
DP based hybrid method is developed in Section 4.2 to
adjust the relaxed solution into a feasible solution to the
primal problem. Finally, a subgradient algorithm is employed
in Section 4.3 to iteratively update the upper and lower
bounds to obtain a near-optimum solution with an applicable
optimality gap.

4.1. Model Decomposition. To relax constraints (16) and (17),
we add the product of the left-hand side of them into objective
function (14) with multipliers 𝜆 fl {𝜆ℎ𝑝𝑖𝑡 ≥ 0}ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V𝑂𝑝
and 𝜇 fl {𝜇ℎ𝑝𝑖𝑡 ≥ 0}ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V𝐷𝑝 , respectively. The pri-
mal problem (14)–(24) is then relaxed as the following
formulation:
Δ (𝜆,𝜇) = min

X,Y,Z,W
∑
ℎ∈H
𝑐𝑓𝑌ℎ + ∑

ℎ∈H
∑
(𝑖,𝑡,𝑗,𝑠)∈A

𝑐𝑙𝑖𝑗𝑋ℎ𝑖𝑡𝑗𝑠
− ∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝑂𝑝

𝜆ℎ𝑝𝑖𝑡 ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

𝑋ℎ𝑖𝑡𝑗𝑠
− ∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝐷𝑝

𝜇ℎ𝑝𝑖𝑡 ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

𝑋ℎ𝑗𝑠𝑖𝑡
+ ∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝑂𝑝

(𝑐𝑂𝑝𝑖 + 𝜆ℎ𝑝𝑖𝑡 )𝑍ℎ𝑝𝑖𝑡
+ ∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝐷𝑝

(𝑐𝐷𝑝𝑖 + 𝜇ℎ𝑝𝑖𝑡 )𝑊ℎ𝑝𝑖𝑡 ,

(25)

subject to constraints (15) and (18)–(24).
Note that since the coupling constrains (16) and (17) are

relaxed, variablesX andY are separated fromZ andW, which
means that the vehicles’ routing plans are released from the
passengers serving strategies. Then the relaxed problem is
decomposed into two sets of subproblems.

Subproblem 2 (shortest path problem). The first set contains|H| subproblems associated with variables X and Y:

Tℎ (𝜆,𝜇) = min
X,Y

𝑐𝑓𝑌ℎ + ∑
(𝑖,𝑡,𝑗,𝑠)∈A

𝑐𝑙𝑖𝑗𝑋ℎ𝑖𝑡𝑗𝑠
− ∑
𝑝∈P

∑
(𝑖,𝑡)∈V𝑂𝑝

𝜆ℎ𝑝𝑖𝑡 ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

𝑋ℎ𝑖𝑡𝑗𝑠
− ∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝐷𝑝

𝜇ℎ𝑝𝑖𝑡 ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

𝑋ℎ𝑗𝑠𝑖𝑡,
(26)

subject to (15), (21) and (22).

We can see that objective function (26) involves two parts
with respect to variables X and Y, respectively. The first
part is the vehicle dispatching cost that consists of vehicles
amortized cost and driver hiring cost. It is determined by
variables Y and fixed for each vehicle ℎ ∈ H. The second
part represents the generalized vehicle traveling cost related
to the traveling path of vehicles in the space-timenetwork and
determined by variables X. Since Subproblem 2 only subjects
to the space-time flow balance and binary constraints, the
second part can be easily regarded as a time-dependent
shortest path problem that can be solved to the optimum
using some exact solution approach, such as forwardDP, label
setting, and label correcting (Mahmoudi and Zhou [7], Yin
et al. [26], and Yang and Zhou [27]). In specific, we set the
generalized vehicle traveling cost as

𝜂ℎ𝑖𝑡𝑗𝑠 = 𝑐𝑙𝑖𝑗 − ∑
𝑝∈P
𝛼ℎ𝑝𝑖𝑡𝑗𝑠 − ∑

𝑝∈P
𝛽ℎ𝑝𝑖𝑡𝑗𝑠, ∀ (𝑖, 𝑡, 𝑗, 𝑠) ∈ A (27)

where

𝛼ℎ𝑝𝑖𝑡𝑗𝑠
= {{{
𝜆ℎ𝑝𝑖𝑡 , if (𝑖, 𝑡) ∈ V𝑂𝑝 , (𝑗, 𝑠) ∈ V : (𝑖, 𝑡, 𝑗, 𝑠) ∈ A,
0, otherwise,

(28)

and

𝛽ℎ𝑝𝑖𝑡𝑗𝑠
= {{{
𝜇ℎ𝑝𝑗𝑠 , if (𝑗, 𝑠) ∈ V𝐷𝑝 , (𝑖, 𝑡) ∈ V : (𝑖, 𝑡, 𝑗, 𝑠) ∈ A,
0, otherwise,

(29)

when vehicle ℎ travels through space-time arc (𝑖, 𝑡, 𝑗, 𝑠) ∈ A.
Then an optimal solution approach based onDP is developed
and described in Algorithm 1. Note that the algorithm is very
efficient and takes a time complexity of 𝑂(|H||T||I|2).
Subproblem 3 (Knapsack problem). Subproblem 3 only in-
cludes one subproblem with respect to variables Z and W,
given as

Π(𝜆,𝜇) = min
Z,W

∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝑂𝑝

(𝑐𝑂𝑝𝑖 + 𝜆ℎ𝑝𝑖𝑡 )𝑍ℎ𝑝𝑖𝑡
+ ∑
𝑝∈P
∑
ℎ∈H

∑
(𝑖,𝑡)∈V𝐷𝑝

(𝑐𝐷𝑝𝑖 + 𝜇ℎ𝑝𝑖𝑡 )𝑊ℎ𝑝𝑖𝑡 , (30)

subject to (18)–(20), (23) and (24).
Note that Subproblem 3 can be regarded as a knapsack

problem with item dependency constraints. That is, if we
select an item from a subset, then another item must also be
taken from a corresponding subset to the former one. More
specifically, in Subproblem3, one passengermust be delivered
within the corresponding delivery space-time window by the
vehicle that has already picked him/her up within his/her
pickup space-timewindow.Themajor objective is to optimize
the ride-share matching strategy, which involves the pickup
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Step 1. Initialize:
(1) 𝑆𝑇ℎ𝑖𝑡 = 𝑀, ∀(𝑖, 𝑡) ∈ V, ℎ ∈ H as the accumulated traveling cost of vehicle ℎ at space-time vertex (𝑖, 𝑡);
(2) 𝑃𝑁ℎ𝑖𝑡 = 0 and 𝑃𝑇ℎ𝑖𝑡 = 0, ∀(𝑖, 𝑡) ∈ V, ℎ ∈ H to record the previous visiting node and time of each space-time

vertex (𝑖, 𝑡) within the routing path of vehicle ℎ, respectively;
(3) Rℎ = ⌀ to record the space-time arcs within the least cost routing path of vehicle ℎ;

Step 2. Do for each vehicle ℎ ∈ H
Step 2.1. Set 𝑆𝑇ℎ𝑖𝑡0 = 0, ∀𝑖 ∈ I;
Step 2.2. Do for each space-time arc (𝑖, 𝑡, 𝑗, 𝑠) ∈ A;

If 𝑆𝑇ℎ𝑖𝑡 + 𝜂ℎ𝑖𝑡𝑗𝑠 < 𝑆𝑇ℎ𝑗𝑠, then update 𝑆𝑇ℎ𝑗𝑠 = 𝑆𝑇ℎ𝑖𝑡 + 𝜂ℎ𝑖𝑡𝑗𝑠, and the previous node and time of space-time vertex(𝑗, 𝑠) as 𝑃𝑁ℎ𝑗𝑠 = 𝑖 and 𝑃𝑇ℎ𝑗𝑠 = 𝑡;
Step 2.3. Select 𝑆𝑇ℎ𝑖∗(𝑡0+𝑇𝛿) = min 𝑆𝑇𝑖(𝑡0+𝑇𝛿);
Step 2.4. If 𝑆𝑇ℎ𝑖∗(𝑡0+𝑇𝛿) + 𝑐𝑓 ≤ 0:

(1) Update the feasible solution of Y as 𝑌ℎ = 1;
(2) Track back from space-time vertex (𝑖∗, 𝑡0 + 𝑇𝛿) to the dummy origin vertex (𝑖𝑂, 𝑡𝑂) via the
values of 𝑃𝑁ℎ𝑖𝑡 and 𝑃𝑇ℎ𝑖𝑡 , and then record all the relative space-time arcs in set Rℎ;

Step 3. Return set Rℎ, then the relaxed solution of X can be obtained as:

𝑋ℎ𝑖𝑡𝑗𝑠 = {{{
1, if (𝑖, 𝑡, 𝑗, 𝑠) ∈ Rℎ,
0, otherwise, ∀ℎ ∈ H, (𝑖, 𝑡, 𝑗, 𝑠) ∈ A

Step 4. Return the relaxed solution of X.

Algorithm 1: An optimal solution approach for solving subproblem Tℎ(𝜆,𝜇).
and delivery plans of passengers for each vehicle, to satisfy all
the passengers’ reservations with the minimum generalized
serving cost. Note that the generalized pickup inconvenience
cost of passenger 𝑝 is actually the summation of {𝑐𝑂𝑝𝑖}𝑖∈I𝑂𝑝
and corresponding multipliers {𝜆ℎ𝑝𝑖𝑡 }ℎ∈H,(𝑖,𝑡)∈V𝑂𝑝 , while the
generalized delivery inconvenience cost is the summation
of {𝑐𝐷𝑝𝑖}𝑖∈I𝐷𝑝 and multipliers {𝜆ℎ𝑝𝑖𝑡 }ℎ∈H,(𝑖,𝑡)∈V𝐷𝑝 . Note that the
structure of Subproblem 3 is simple enough with relative
fewer variables to be solved efficiently by an integer solver
(such as CPLEX) calling the branch-and-bound algorithm.

Furthermore, we can further obtain the optimal objec-
tive value of relaxed problem (25) by plugging the relaxed
solution of X, Y, Z, and W (respectively, denoted by X̂ ={X̂ℎ𝑖𝑡𝑗𝑠}ℎ∈H,(𝑖,𝑡,𝑗,𝑠)∈A, Ŷ = {Ŷℎ}ℎ∈H, Ẑ = {Ẑℎ𝑝𝑖𝑡 }ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V, and
Ŵ = {𝑊̂ℎ𝑝𝑖𝑡 }ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V) into the following expression:

Δ (𝜆,𝜇) = Tℎ (𝜆,𝜇) + Π (𝜆,𝜇) . (31)

Note that the value ofΔ(𝜆,𝜇) can serve as the lower bound
of the optimal value of the primal problem according to the
duality property of LR (see Geoffrion [28]).

4.2. Hybrid Method Based on Greedy Algorithm and Dynamic
Programming. For one set of given 𝜆 and 𝜇, if the relaxed
solution of variables is found to be feasible to primal problem
(14)–(24), then it is also the optimal solution. Otherwise, we
have to use certain algorithms to construct a feasible solution
based on the current relaxed solution. It is also a typical
method adopted inmany studies, such as Li andOuyang [29],
Maŕın [30], An et al. [31], Fu and Diabat [32], and Chen et al.
[33].

One intuitive way to modify the relaxed solution is keep-
ing the values of Ẑ and Ŵ, i.e., the assignments of passengers’
reservations to vehicles, and then adjust the values of X̂ and
Ŷ to reform the space-time trajectories of vehicles and fulfill
the reservations by covering their corresponding pickup and
delivery space-time vertexes. However, though the values of
Ẑ and Ŵ are subject to the passenger serving constraints
and vehicle capacity constraints, the assignment plansmay be
still impossible to complete since the space-time flow balance
constraints are not taken into consideration. An illustrative
example is shown in Figure 5, where three reserved trips are
assigned to vehicle ℎ1 according to the value of Ẑ and Ŵ.
Assuming the capacity of ℎ1 as 𝐶ℎ1 = 3, we can see that only
part of the reservations can be fulfilled by ℎ1 itself since it
is obviously unrealistic to pick up passengers 1 and 3 from
two different location at the same time. That is, we cannot
obtain a practical routing strategy for ℎ1 based on the current
assignment plan.

Therefore, to guarantee the efficiency of solution ap-
proach for the on-demand ridesharing system, we here
particularly develop a three-phase hybrid method that can
provide the good-quality feasible solutions of X, Y, Z, and W
(respectively, denoted byX = {𝑋ℎ𝑖𝑡𝑗𝑠}ℎ∈H,(𝑖,𝑡,𝑗,𝑠)∈A,Y = {𝑌ℎ}ℎ∈H,
Z = {𝑍ℎ𝑝𝑖𝑡 }ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V, and W = {𝑊ℎ𝑝𝑖𝑡 }ℎ∈H,𝑝∈P,(𝑖,𝑡)∈V)
adapted from Ẑ and Ŵ. Specifically, the first step of the hybrid
solution (termed as screening procedure) is to screen the
task schedule of ℎ1 and get rid of the vertexes that cannot
be practically visited. Here we adopt the greedy algorithm to
adjust the previous vehicle routing plan obtained from the
values of Ẑ and Ŵ.

Specifically, to gradually capture the iteration process of
the screening procedure, we define two lists: the vehicle tasks
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Figure 5: Illustration for the hybrid method.

list (denoted as Lℎ (ℎ ∈ H)) and the passengers reassigning
list (denoted as L𝑟). For example, Lℎ1 in Figure 6 is a list
that records the pickup and delivery space-time vertexes
to be visited by ℎ1. The two columns of Lℎ1 , respectively,
record the visiting nodes and times of the space-time vertexes
and all the items are sorted in ascending order of their
corresponding visiting times. Afterwards, we screen list Lℎ1
to eliminate the space-time vertexes that cannot be visited on
time. Specifically, if node 𝑖1 is assumed as the first node visited
by vehicle ℎ1, then the next node 𝑖2 can be visited on time if
and only if

𝑡𝑖1 + 𝑡𝑖1𝑖2 ≤ 𝑡𝑖2 , (32)

where 𝑡𝑖1 , 𝑡𝑖2 , and 𝑡𝑖1𝑖2 , respectively, represent the visiting time
of node 𝑖1 and 𝑖2 and the least traveling time between 𝑖1 and𝑖2. Note that since the travel time between two adjacent nodes
(say 𝑖 and 𝑗) can be easily obtained as 𝑡𝑖𝑗 = 𝑑𝑖𝑗/V𝑖𝑗, where𝑑𝑖𝑗, 𝑡𝑖𝑗, and V𝑖𝑗, respectively, denote the distance, travel time,
and average speed through link (𝑖, 𝑗). Then the least travel
time between each two nodes in the transportation network
can be further obtained by simply adopting a shortest path
algorithm, such as Dijkstra’s, Floyd-Warshall, or label setting
algorithm. Since this area, which has been well studied, is
not a focus of this paper, we here simply assume that the
travel times between nodes are fixed during the operation
cycle and we adopt the label setting algorithm to generate
the node travel time matrix. If (32) is not fulfilled, space-time
vertex (𝑖2, 𝑡𝑖2) will not be visited on time and the reservation
of corresponding passenger 𝑝1 (𝑍ℎ1𝑝1𝑖2𝑡𝑖2 =1) cannot be satisfied.
Then we remove both the pickup and delivery space-time
vertexes of 𝑝1 from Lℎ1 to L𝑟 and the index of passenger𝑝1 is also added to the third column of L𝑟. As shown in
Figure 6, we assume that 𝑡26=3 and 𝑍ℎ1361 =𝑊̂ℎ13128 =1. We can
see that space-time vertex (2,1) is the first vertex visited byℎ1 and the following vertex (6,1) cannot be visited on time.
Then vertexes (6,1) and (12,8) are both removed from 𝐿ℎ1 to

𝐿𝑟 and passenger index 3 is added to the first two cells in third
column of L𝑟.

Afterwards, we turn to the next vertex in Lℎ1 and
repeat the screen process above until all the vertexes are
checked. Eventually, the whole screening procedure is also
performed for the other occupied vehicles that satisfies∑𝑝∈P∑(𝑖,𝑡)∈V𝑂𝑝 𝑍ℎ𝑝𝑖𝑡 > 0 until all the tasks lists of these vehicles
are screened. The detailed process is shown as Algorithm 2.

To fully satisfy the reservations of the passengers, the
remaining passengers that recorded in L𝑟 shall be reassigned
to some of the unoccupied vehicles, i.e., the vehicles satisfying∑𝑝∈P∑(𝑖,𝑡)∈V𝑂𝑝 𝑍ℎ𝑝𝑖𝑡 = 0 (ℎ ∈ H). This process is also termed as
reassigning procedure and we here propose a greedy based
implementing algorithm. Specifically, we initially generate
the common tasks list (denoted by L𝑐) to record the all
the pickup and delivery tasks obtained from L𝑟. As shown
in Figure 7, the first two columns contain the node and
time to be visited. The third column records the indexes
of the corresponding passengers to serve and the fourth
one has the property tags representing the purpose of the
tasks. Particularly, numbers 1 and 2, respectively, represent
the pickup and delivery tasks. Similar to Lℎ, all the space-time
tasks in L𝑐 are sorted in ascending order of the visiting times
Then, we screen list L𝑐 to select the tasks for ℎ2 with respect
to the flow balance constraints and capacity constraints. For
example, we assume that (𝑖2, 𝑡𝑖2) is the first space-time vertex
visited by ℎ2 and the following one (𝑖3, 𝑡𝑖3) can also be visited
on time if and only if (32) is satisfied. If so, the vehicle will first
check if there are passengers to be delivered at this vertex.
Note that all the delivered passengers are identified as fully
served, so the corresponding tasks will also be removed from
L𝑟 to Lℎ2 . Then, if there are also some passengers to be picked
up, it is necessary to first make sure if there are enough
spare seats. If so, some of the passengers will be picked up
under the capacity limitation. Afterwards, if the vehicle is full
of passengers, it will directly head to the closest passenger
delivery vertex; otherwise, it will turn to the next vertex and
repeat the serving process above. Such as the illustration
example in Figure 7, where we set 𝐶ℎ2 = 2 and vertex (6,1)
is the first vertex to visit as shown in L𝑐. Since we assume
that reservations of all the passengers are executable, vertex
(12,8) can also be visited by ℎ2. Then passenger 3 is firstly
dropped off at this vertex and the corresponding tasks are
removed from L𝑟 to Lℎ2 . Since there are two spare seats left,
only two passengers (say passenger 4 and 5) can be picked
up. Afterwards, ℎ2 can pick up no more passengers and have
to directly drop off the passengers onboard. Note that the
delivery space-time vertex of passenger 4 (i.e., (21,15)) shall
be visited earlier than that of passenger 5 (i.e., (28,20)), so
we here choose (21,15) as the next vertex to visit and the
serving process are repeated as above. Then turn to the next
vertex if ℎ2 is not full or turn to the earliest vertex to drop
off the passengers onboard otherwise.The iteration is carried
on until all the tasks in L𝑐 are screened. Eventually, this
resign process will be repeated for some other unoccupied
vehicles until all the user trips are fully covered, i.e., L𝑟 =⌀. The detailed process of resign procedure is shown as
Algorithm 3.
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Figure 7: Illustration for the reassigning procedure.

Finally, a DP based algorithm similar to Algorithm 1 is
further developed to generateX andY based on the value ofZ
and W, which is termed as routing procedure. In specific, we
first calculate the generalized vehicle traveling cost for ℎ ∈ H
on space-time arc (𝑖, 𝑡, 𝑗, 𝑠) (denoted by 𝜌ℎ𝑖𝑡𝑗𝑠) as
𝜌ℎ𝑖𝑡𝑗𝑠 = {{{

−𝑀, if 𝑍ℎ𝑝𝑖𝑡 = 1 ∨𝑊ℎ𝑝𝑗𝑠 = 1, ∀𝑝 ∈ P,
𝑐𝑙𝑖𝑗, otherwise,

∀ℎ ∈ H, (𝑖, 𝑡, 𝑗, 𝑠) ∈ A,
(33)

where𝑀 is a very large positive value. Then for each vehicle,
steps 2.1-2.4 in algorithm 1 are called repeatedly to make
the routing schedule that covers all the serving tasks with
the least traveling cost. The specific process is presented
as Algorithm 4. The DP based implementing algorithm
takes a solution time of 𝑂(|H||T||I|2), which is efficient
and dominates the total computational time of the hybrid
method.

Eventually, by plugging the value of X, Y, Z, and W into
primal objective function (14), we obtain a feasible objective
value. It also serves as the upper bound of the optimal
objective.

4.3. Updating Lagrangian Multipliers. If the upper bound
obtained from the hybridmethod is equal to the lower bound
(31), then the corresponding feasible solution can be returned
as the optimal solution according to the dual theory (Fisher

[34]). Otherwise, a subgradient algorithm is usually used to
update the multipliers 𝜆 and 𝜇 based on the optimality gap
between the current upper and lower bounds, which can
search for a better feasible solution and tighter lower bound,
i.e.,

max
𝜆,𝜇≥0

Δ (𝜆,𝜇) . (34)

It is actually a typical procedure that has been widely
used in many previous studies for updating Lagrangian
multipliers, such as Li [35], Zheng [36], Cui et al. [37], and
Yin et al. [38]. By this, the optimality gap can be iteratively
narrowed to eventually obtain a near-optimum solution with
an acceptable tolerance or even zero in ideal cases, when the
optimal solution is also achieved. Its main process is briefly
described below.

Firstly, we initialize the iteration index 𝑘 = 0, the step
parameter 0 ≤ 𝜏 ≤ 2, and Lagrangian multipliers (𝜆ℎ𝑝𝑖𝑡 )0 =(𝜇ℎ𝑝𝑖𝑡 )0 = 0. Then the relaxed solution can be obtained by
solving problem (17) as Section 4.1. Accordingly, the feasible
solution can be obtained by modifying the relaxed solution
with the hybridmethod described in Section 4.2. Afterwards,
we obtain the step size based on the difference between the
current lower and upper bounds, i.e.,

𝑡𝑘 = 𝜏𝑘 (𝑈𝐵𝑘 − 𝐿𝐵𝑘 (𝜆,𝜇))
∑𝑝∈P∑ℎ∈H ((𝐴𝑝ℎ)𝑘 + (𝐵𝑝ℎ)𝑘) , (35)
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Step 1. Initialize:
(1) Z
󸀠 = Ẑ and W

󸀠 = Ŵ to record the phased results of Z and W obtained from screening procedure;
(2) L𝑟 to record the passengers that need to be resigned;
(3) Lℎ to record the serving tasks of vehicle ℎ;

Step 2. Do for each vehicle ℎ ∈ H
If ∑𝑝∈P∑(𝑖,𝑡)∈V𝑂𝑝 𝑍ℎ𝑝𝑖𝑡 > 0, then do from the first vertex (𝑖1, ℎ1) ∈ Lℎ to the last one(𝑖|𝐿ℎ |, ℎ|Lℎ |) ∈ Lℎ:
Step 2.1. If 𝑡𝑖𝑘 + 𝑡𝑖𝑘𝑖𝑘+1 ≤ 𝑡𝑖𝑘+1 (𝑘 = 1, 2, . . . , |Lℎ|), then update 𝑘 = 𝑘 + 1;
Step 2.2. Otherwise:

(1) Remove the elements that take the value of (𝑖𝑘+1, 𝑡𝑘+1) out of list Lℎ
(2) Do for each 𝑝 ∈ {𝑝 | 𝑍ℎ𝑝𝑖𝑘+1𝑡𝑘+1 = 1 ∨ 𝑊̂ℎ𝑝𝑖𝑘+1𝑡𝑘+1 = 1}:

Update L𝑟, Z
󸀠
and W

󸀠
as L𝑟 = L𝑟 ∪ {𝑝}, 𝑍󸀠ℎ𝑝𝑖𝑡 = 0, ∀(𝑖, 𝑡) ∈ V𝑂𝑝 and 𝑍󸀠ℎ𝑝𝑖𝑡 = 0,∀(𝑖, 𝑡) ∈ V𝐷𝑝 , respectively;

Step 3. Return Lℎ, Z
󸀠
and W

󸀠
.

Algorithm 2: Screening procedure for modifying Ẑ and Ŵ to Z and W.

Step 1. Initialize:
(1) L𝑝 to record the pickup and delivery space-time vertexes of the passengers in L𝑟;
(2) Lℎ𝑂 to record the passengers that are picked up by vehicle ℎ;
(3) The feasible solution Z = Z

󸀠
and W = W

󸀠
;

Step 2. Do for each vehicle ℎ ∈ H
If ∑𝑝∈P∑(𝑖,𝑡)∈V𝑂𝑝 𝑍ℎ𝑝𝑖𝑡 = 0:

Step 2.1. Update list Lℎ𝑂 by adding passengers 𝑝 ∈ {𝑝 | ∑ℎ∈H 𝑍ℎ𝑝𝑖1𝑡1 = 1 ∧ 𝑝 ∈ L𝑟}(𝑖1 ,𝑡1)∈L𝑐 under the vehicle
capacity limit 𝐶;
Step 2.2. Do from the first vertex (𝑖1, 𝑡1) ∈ L𝑐 to the last one (𝑖|L𝑐 |, ℎ|L𝑐 |) ∈ L𝑐:

Step 2.2.1. If |Lℎ𝑂| < 𝐶, then turn to the space-time vertex (𝑖𝑙, 𝑡𝑙) ∈ L𝑐, (𝑙 = min{𝑙 | 𝑡𝑙 > 𝑡𝑘});
Step 2.2.2. Otherwise, turn to the space-time vertex (𝑖𝑙, 𝑡𝑙) ∈ L𝑐 (𝑙 ∈ {𝑙 | ∑ℎ∈H 𝑊̂ℎ𝑝𝑖𝑙𝑡𝑙 = 1, ∀𝑝 ∈ Lℎ𝑂});
Step 2.2.3. If 𝑡𝑖𝑘 + 𝑡𝑖𝑘𝑖𝑙 ≤ 𝑡𝑖𝑙 (𝑘 = 1, 2, . . . , |Lℎ|):

If the set of passengers to be delivered at space-time vertex (𝑖𝑙, 𝑡𝑙) is not empty,
i.e., P𝑑𝑙 = {𝑝 | ∑ℎ∈H 𝑊̂ℎ𝑝𝑖1𝑡1 = 1 ∧ 𝑝 ∈ Lℎ𝑂} ̸= ⌀, then update Lℎ𝑂 = Lℎ𝑂 − P𝑑𝑙 and Lℎ = Lℎ ∪ {Lℎ𝑂 ∩ P𝑑𝑙 },
and execute step 2.1 otherwise;

Step 2.2.4. Otherwise, if P𝑑𝑙 = {𝑝 | ∑ℎ∈H 𝑊̂ℎ𝑝𝑖1𝑡1 = 1 ∧ 𝑝 ∈ Lℎ𝑂} ̸= ⌀, then update LO
h = LO

h ¡ Pdl ;
Step 2.2.5. Update 𝑘 = l, repeat Step 2.2.1 and 2.2.2 to locate the next space-time vertex for
continuing reassigning process;

Step 2.3. Update L𝑟, Z and W as L𝑟 = L𝑟 − Lℎ, 𝑍ℎ𝑝𝑖𝑡 = 1 (𝑝 ∈ Lℎ and ∑ℎ∈H 𝑍ℎ𝑝𝑖𝑡 = 1) and𝑊ℎ𝑝𝑖𝑡 = 1
(𝑝 ∈ Lℎ and ∑ℎ∈H 𝑊̂ℎ𝑝𝑖𝑡 = 1), respectively;
Step 2.4. If L𝑟 = ⌀, terminate the iteration; otherwise, update ℎ = ℎ + 1 and continue the iteration;

Step 3. Return the feasible solution Z and W.

Algorithm 3: Reassigning procedure for modifying Ẑ and Ŵ to Z and W.

where

(𝐴𝑝
ℎ
)𝑘 = ∑
(𝑖,𝑡)∈V𝑂𝑝

((𝑍ℎ𝑝𝑖𝑡 )𝑘 − ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

(𝑋ℎ𝑖𝑡𝑗𝑠)𝑘)
2,

(𝐵𝑝
ℎ
)𝑘 = ∑
(𝑖,𝑡)∈V𝐷𝑝

((𝑊̂ℎ𝑝𝑖𝑡 )𝑘 − ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

(𝑋ℎ𝑗𝑠𝑖𝑡)𝑘)
2,

(36)

and 𝑈𝐵𝑘, 𝐿𝐵𝑘, and 𝜏𝑘 are the best upper bound, the cur-
rent lower bound, and the step parameter in iteration 𝑘,
respectively. Note that if the lower bound does not improve

within a certain number (say 5) of iterations, then we can
slightly adjust the step size by updating the step parameter
as 𝜏𝑘+1 = 𝜏𝑘/𝜃, where 𝜃 is a contraction ratio greater than 1.

Then the multipliers in iteration 𝑘 + 1 can be obtained by

(𝜆ℎ𝑝𝑖𝑡 )𝑘+1 = max
{{{0, (𝜆

ℎ𝑝
𝑖𝑡 )𝑘

+ 𝑡𝑘((𝑍ℎ𝑝𝑖𝑡 )𝑘 − ∑
(𝑗,𝑠)∈V:(𝑖,𝑡,𝑗,𝑠)∈A

(𝑋ℎ𝑖𝑡𝑗𝑠)𝑘)}}} ,
(37)
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Step 1. Initialize:
(1) 𝑆𝑇ℎ𝑖𝑡 = 𝑀, ∀(𝑖, 𝑡) ∈ V, ℎ ∈ H as the accumulated traveling cost of vehicle ℎ at

space-time vertex (𝑖, 𝑡);
(2) 𝑃𝑁ℎ𝑖𝑡 = 0 and 𝑃𝑇ℎ𝑖𝑡 = 0, ∀(𝑖, 𝑡) ∈ V, ℎ ∈ H to record the previous visiting node

and time of each space-time vertex (𝑖, 𝑡) within the routing path of vehicle ℎ, respectively;
(3) Rℎ = ⌀ to record the space-time arcs within the least cost routing path of vehicle ℎ;
(4) 𝜌ℎ𝑖𝑡𝑗𝑠 = {{{

−𝑀, if 𝑍ℎ𝑝𝑖𝑡 = 1 ∨𝑊ℎ𝑝𝑗𝑠 = 1, ∀𝑝 ∈ P,
𝑐𝑙𝑖𝑗, otherwise, ∀ℎ ∈ H, (𝑖, 𝑡, 𝑗, 𝑠) ∈ A,

to present the generalized vehicle traveling cost for each vehicle on each space-time arc;
Step 2. Do for each vehicle ℎ ∈ H

Step 2.1 Set 𝑆𝑇ℎ𝑖𝑡0 = 0, ∀𝑖 ∈ I;
Step 2.2 Do for each space-time arc (𝑖, 𝑡, 𝑗, 𝑠) ∈ A;

If 𝑆𝑇ℎ𝑖𝑡 + 𝜌ℎ𝑖𝑡𝑗𝑠 < 𝑆𝑇ℎ𝑗𝑠, then update 𝑆𝑇ℎ𝑗𝑠 = 𝑆𝑇ℎ𝑖𝑡 + 𝜌ℎ𝑖𝑡𝑗𝑠, 𝑃𝑁ℎ𝑗𝑠 = 𝑖 and 𝑃𝑇ℎ𝑗𝑠 = 𝑡;
Step 2.3 Select 𝑆𝑇ℎ𝑖∗(𝑡0+𝑇𝛿) = min 𝑆𝑇𝑖(𝑡0+𝑇𝛿);
Step 2.4 Track back from space-time vertex (𝑖∗, 𝑡0 + 𝑇𝛿) to the dummy origin vertexes (𝑖𝑂, 𝑡𝑂)

via 𝑃𝑁ℎ𝑖𝑡 and 𝑃𝑇ℎ𝑖𝑡 , and then record all the relative space-time arcs in set Rℎ;
Step 3 Return set Rℎ, then the feasible solution of X and Y can be obtained as:

𝑋ℎ𝑖𝑡𝑗𝑠 = {{{
1, if (𝑖, 𝑡, 𝑗, 𝑠) ∈ Rℎ,
0, otherwise, ∀ℎ ∈ H, (𝑖, 𝑡, 𝑗, 𝑠) ∈ A

and 𝑌ℎ = {{{{{
1, if ∑

𝑝∈P
∑
(𝑖,𝑡)∈V𝑂𝑝

𝑍ℎ𝑝𝑖𝑡 > 0,
0, otherwise, ∀ℎ ∈ H;

Step 4 Return the feasible solution X and Y.

Algorithm 4: DP based implementing algorithm for constructing feasible solutions of X and Y.

(𝜇ℎ𝑝𝑖𝑡 )𝑘+1 = max
{{{0, (𝜇

ℎ𝑝
𝑖𝑡 )𝑘

+ 𝑡𝑘((𝑊̂ℎ𝑝𝑖𝑡 )𝑘 − ∑
(𝑗,𝑠)∈V:(𝑗,𝑠,𝑖,𝑡)∈A

(𝑋ℎ𝑗𝑠𝑖𝑡)𝑘)}}} ,
(38)

Themain LR procedures are summarized in Algorithm 5.

5. Numerical Examples

In Section 5, a series of numerical studies are conducted
to test the performance of the proposed modeling frame-
work and draw some managerial insight about the on-
demand ridesharing operation strategies. In Section 5.1, we
first demonstrate the effectiveness of our solution approach
by comparing with that of CPLEX. Afterwards, multiscale
experiments are performed to further illustrate the impact of
different scales on the efficiency and accuracy of our solution
approach. Then, we explore how the optimal vehicle opera-
tion strategies change over the key parameters in Section 5.2.

5.1. Experimental Results Comparing with CPLEX. To better
demonstrate the performance of the model and solution
approach proposed in our study, a set of illustrative numerical
examples are conducted comparing with CPLEX.The option
parameters of CPLEX are set to default value. All the
experiments are implemented on a PC with 3.4 GHz CPU
and 8GBRAM.The proposed solution algorithm and CPLEX

are all performed on the MATLAB platform. Specifically,
CPLEX is called by Yalmip (https://yalmip.github.io/), a free
MATLAB toolbox for optimization modeling by interfacing
external solvers such as CPLEX, Gurobi, and XPRESS. Since
we use 5000 seconds as the solution threshold, the solution
process will be terminated after that and return the final
feasible solution and relevant gap. If no feasible solution is
obtained within the time limit, we report the gap as “NA”.
Note that even though the PDPSW is rather complicated
for adopting the concept of pickup and delivery space-time
windows, our proposed ILP model is formulated compactly
enough that CPLEX is able to solve medium-scale cases.
The LR parameters are set as follows: 𝜏=2, 𝜏=10−3, and 𝜃=2.𝐾=200.

Initially, the proposed solution approach will be, respec-
tively, examined in the 100-node grid, 400-node grid, and
900-node grid as shown in Figure 3. To simplify the expe-
rience without generality, we set 𝑑𝑖𝑗=V𝑖𝑗=1, ∀(𝑖, 𝑗) ∈ L. The
fixed cost is set as 𝑐𝑓=$30within the operation cycle.Weunify
the capacity of each vehicle as 𝐶ℎ = 𝐶 = 2 (ℎ ∈ H) and
the traveling cost is assumed as 𝑐𝑙𝑖𝑗 = 𝑐𝑙 × 𝑑𝑖𝑗, ∀(𝑖, 𝑗) ∈ L,
where 𝑐𝑙 is constant coefficient and here we set 𝑐𝑙=$0.1. The
pickup and delivery space-time windows of each passenger’s
reservation are given as randomly distributing within the
space-time network. In special, we assume that 2 timestamps
and 5 nodes are contained in each pickup window, while
3 timestamps and 5 nodes are contained in each delivery
window. The distribution pattern of space-time vertexes is

https://yalmip.github.io/
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Step 1. Initialize:
(1) Lagrangian multipliers (𝜆ℎ𝑝𝑖𝑡 )0 = (𝜇ℎ𝑝𝑖𝑡 )0 = 0, ∀𝑝 ∈ P, ℎ ∈ H, (𝑖, 𝑡) ∈ V;
(2) Step parameters 0 ≤ 𝜏 ≤ 2;
(3) Iteration index 𝑘 fl 0;
(4) Best upper bound 𝑈𝐵0 = +∞;

Step 2. Solve relaxed problem (25) with the solution approach described in Section 4.1, and then
obtain the relaxed solution and the lower bound;

Step 3. If the lower bound does not improve in certain numbers of iterations, then update𝜏𝑘+1 = 𝜏𝑘/𝜃 (𝜃 > 1);
Step 4. Adapt the relaxed solution obtained above to the relative feasible solution by using the

implementing algorithm proposed in Section 4.2, and then update 𝑈𝐵𝑘 to the relative feasible
objective if 𝑈𝐵𝑘 is greater than it;

Step 5. Calculate 𝑡𝑘 as equation (35);
Step 6. Update Lagrangian multipliers as equations (37) and (38);
Step 7. Terminate this algorithm if

(1) Optimality gap (𝑈𝐵𝑘 − 𝐿𝐵𝑘(𝜆,𝜇))/𝑈𝐵𝑘 ≤ 𝜀, where 𝜀 is a predefined error tolerance;
(2) Step parameters 𝜏𝑘 < 𝜏, where 𝜏 is the predefined lower threshold;
(3) Iteration index 𝑘 = 𝐾, where 𝐾 is the predefined upper threshold;
Otherwise, update 𝑘 ←󳨀 𝑘 + 1 and turn to Step 2;

Step 8. Return the current best upper bound as the final objective value and corresponding feasible
solution and optimality gap.

Algorithm 5: LR algorithm for VRPSTW.

Table 1: Comparison between LR and CPLEX.

Instance Ctotal Solution time (sec) Gap (%)
CPLEX LR CPLEX LR CPLEX LR

100-20-20 548.4 548.4 418.6 775.4 <0.1 0.59
400-30-30 915.2 895.6 4629.3 1876.5 22.60 3.13
900-40-40 NA 1225.7 >5000 4817.4 NA 7.22

the same as the illustration example in Section 3.2. Besides,
we uniformly set the inconvenience costs for picking up and
delivering a passenger as 𝑐𝑂𝑝𝑖 = 𝑐𝑝 × 𝑑𝑖𝑂𝑝0𝑗, 𝑖 ∈ I𝑂𝑝 , and 𝑐𝐷𝑝𝑖 =𝑐𝑝 × 𝑑𝑗𝑖𝐷𝑝0 , 𝑖 ∈ I𝐷𝑝 , respectively, where 𝑐𝑝 is constant coefficient
and we set 𝑐𝑝=$0.1.

Thenumerical results are shown in Table 1. In the instance
column, the codes in each character string, respectively,
denote the number of spatial nodes, the number of times-
tamps, and the number of passenger reservations. For exam-
ple, instance 100-20-20 contains 100 nodes, 20 timestamps,
and 20 passenger reservations. Note that, to ensure that
there are always enough vehicles for dispatching during the
iteration process of algorithm, we set the initial fleet size the
same as the number of passengers, i.e., |H| = 30. However,
the number of vehicles that are eventually sent out for serving
passengers (denoted as𝐻𝑢) is determined as𝐻𝑢 = ∑ℎ∈H 𝑌ℎ.
In the result columns, the optimality gap of LR is obtained
by (𝑈𝐵𝑘 − 𝐿𝐵𝑘(𝜆,𝜇))/𝑈𝐵𝑘 × 100%, where UB and LB denote
the best upper and lower bound. Besides, we also present
the average values of total system cost (denoted by 𝐶𝑡𝑜𝑡𝑎𝑙)
obtained by these two solution approaches as a comparison.

We can see from Table 1 that both of the two solution
approaches take longer solution time with the increase of
instance scale. Nevertheless, the performance of CPLEX

degenerates much faster than LR. For example, in solving the
smaller scale instances like 100-20-20, CPLEX takes shorter
solution time to obtain the same objective value and a smaller
gap. Nevertheless, for the medium scale ones, we can see
that LR can still solve the instances to solutions with smaller
objective value (895.6) and gap (<4%) in a relatively short
solution time (<1900s), while the performance of CPLEX
turns to be inefficient and unreliable. Moreover, for the
larger scale instances, CPLEX cannot obtain any feasible
solution within 5000 seconds, yet LR can still obtain a good-
quality solution (1225.7) with relatively small gap (<8%) in a
reasonable solution time (<4900).

To further test how the performance of model (14)–(24)
changes over the different problem scales, we perform a
total of 27 instances in different scales, which is shown as
Table 2. Particularly, we repeat each instance for 10 times with
randomly generated passenger reservations involving the
pickup and delivery space-time windows. Then the average
values (short for Ave) and standard deviations (short for SD)
of total system cost (denoted by 𝐶𝑡𝑜𝑡𝑎𝑙), vehicles dispatching
cost (denoted by CF), vehicle routing cost (denoted by CT),
passenger inconvenience cost (denoted byCP), solution time,
and optimality gap of each instance are all present in Table 2.
Besides, to showmore details about the solutions, we specially
select a case in instance 100-40-40 as an illustrative example
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Table 2: Numerical results for multiscale instances.

Instance Value CF CT CP Ctotal Solution Time (sec) Gap (%)

100-20-20 Ave 534.0 12.1 2.3 548.4 775.4 0.59
SD 12.0 1.3 1.1 12.0 117.1 0.30

100-20-30 Ave 834.0 17.1 4.3 855.4 804.4 2.63
SD 12.0 1.6 0.6 13.5 169.8 0.64

100-20-40 Ave 1086.0 22.3 4.3 1112.6 1264.5 3.05
SD 22.4 1.2 1.2 22.2 120.1 0.21

100-30-20 Ave 504.0 13.6 2.1 519.7 671.6 2.82
SD 12.0 0.4 1.2 11.7 218.8 0.12

100-30-30 Ave 750.0 18.7 3.5 772.2 1079.7 3.28
SD 32.9 1.1 0.6 33.9 159.1 1.35

100-30-40 Ave 1002.0 25.1 5.3 1032.4 1768.7 5.66
SD 24.0 0.7 1.1 23.1 170.0 1.53

100-40-20 Ave 480.0 14.1 2.7 496.9 1215.7 2.18
SD 0.0 0.6 0.5 0.8 590.6 0.51

100-40-30 Ave 726.0 20.1 4.2 750.4 1370.2 3.20
SD 39.8 0.9 0.6 36.4 273.3 0.67

100-40-40 Ave 996.0 27.0 5.5 1028.5 1433.8 3.97
SD 29.4 1.0 1.5 28.2 217.1 0.62

400-20-20 Ave 580.0 15.0 2.1 597.0 1151.8 2.05
SD 14.1 1.0 1.2 13.5 356.9 0.36

400-20-30 Ave 870.0 23.2 3.3 896.5 1279.0 2.91
SD 0.0 1.2 1.5 0.9 332.9 0.07

400-20-40 Ave 1162.5 29.2 3.8 1195.5 1336.0 4.22
SD 32.7 1.2 2.4 31.5 459.5 0.81

400-30-20 Ave 565.0 20.8 2.3 588.1 1552.4 2.83
SD 20.6 1.6 1.2 19.1 408.4 0.63

400-30-30 Ave 858.0 33.0 4.7 895.6 1876.5 3.13
SD 14.7 2.9 0.2 16.7 628.9 0.73

400-30-40 Ave 1140.0 42.0 4.7 1186.7 1963.0 4.18
SD 19.0 1.8 1.3 19.5 399.8 0.52

400-40-20 Ave 540.0 25.2 2.1 567.3 1981.3 2.45
SD 19.0 3.3 0.7 21.8 293.8 0.45

400-40-30 Ave 840.0 35.5 2.6 878.1 2415.5 3.83
SD 26.8 2.9 1.4 26.5 867.6 0.83

400-40-40 Ave 1152.0 49.4 2.7 1204.0 4223.5 4.24
SD 40.7 3.1 2.3 42.1 392.9 1.34

900-20-20 Ave 588.0 15.4 1.4 604.8 1018.5 2.98
SD 14.7 1.5 1.4 14.5 373.9 0.24

900-20-30 Ave 882.0 24.2 2.1 908.3 1980.1 3.91
SD 14.7 2.0 1.6 14.4 860.4 0.02

900-20-40 Ave 1188.0 33.3 2.2 1223.6 2234.3 4.80
SD 14.7 1.6 2.0 14.1 731.8 0.37

900-30-20 Ave 588.0 24.7 1.2 613.8 1883.7 4.50
SD 14.7 3.0 1.2 15.4 713.3 0.30

900-30-30 Ave 882.0 37.3 1.3 920.6 2153.5 5.67
SD 14.7 2.5 1.4 13.5 541.2 0.17

900-30-40 Ave 1170.0 48.7 4.4 1223.0 3080.2 6.31
SD 19.0 1.6 2.2 17.0 1348.9 0.45

900-40-20 Ave 588.0 31.6 0.4 619.9 2484.6 4.83
SD 14.7 4.1 0.5 15.3 1096.1 0.07

900-40-30 Ave 888.0 47.9 1.2 937.1 4222.2 6.00
SD 14.7 3.3 1.7 11.6 975.3 0.75

900-40-40 Ave 1158.0 63.8 3.9 1225.7 4817.4 7.22
SD 14.7 4.5 2.1 15.2 1901.5 0.67
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Table 3: Computational results of a case in instance 100-40-40.

# of Vehicle # of Passenger Pickup Location/Time Delivery Location/Time Travel Time
1 16 24/7 78/18 9
2 30 93/7 3/17 8
3 32 29/5 22/14 7
4 40 47/14 87/22 4
5 9 54/10 23/14 4
6 8 29/5 67/16 4
7 25 4/11 34/19 2
8 11 94/12 39/24 12
9 4 33/12 59/20 8
10 33 58/3 64/8 5
11 34 54/15 43/18 2
12 39 13/5 48/17 8

13 28 61/8 30/24 15
38 71/5 47/16

14 14 67/7 26/16 5
15 6 44/17 64/23 2
16 24 78/8 58/15 2
17 3 87/16 37/25 5
18 18 77/9 21/24 11
19 35 65/10 76/17 2
20 23 77/11 95/17 4
21 10 87/11 16/22 8
22 20 38/13 48/19 1
23 12 95/14 89/23 4
24 36 67/14 91/27 9
25 2 83/10 27/21 11
26 5 51/4 33/12 4
27 7 27/3 56/9 3
28 37 95/14 70/24 8
29 15 9/15 85/27 12
30 17 75/15 42/25 6
31 21 11/19 41/24 3
32 26 82/5 94/11 3
33 1 67/12 48/18 3
34 13 68/6 12/19 11
35 22 33/11 29/19 8
36 19 2/15 26/22 6
37 29 64/6 49/15 7
38 31 76/7 84/12 5
39 27 26/11 50/20 6

to present the number of dispatched vehicles, the number
of passengers they serve, the specified pickup and delivery
locations and times, and the travel time of each vehicle, which
is shown as Table 3 in Appendix.

We can see that as the number of reservations increases,
the solution time and the optimality gap strictly increase,
yet such tendency is not so obvious when the scale of
space-time network grows. For example, when the scale of
instance increases from instance 100-20-20 to 100-30-20,
the solution time even decreases from 775.4 to 671.6, and

the similar case can also be seen from 100-30-40 to 400-
30-40 that the optimality gap decreases from 5.66 to 4.18.
Besides, we can also find that the dispersion of solution
time in each instance is much more evident with respect
to the randomly distributed passenger reservations, while
the optimality gap is barely affected. This demonstrate that
the SD of solution time is sensitive to the space-time
distribution of passenger reservations and shall be paid
more attention in setting solution threshold for real world
cases.
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Furthermore, we can also find how the variations of
instance scale affect the optimal vehicles operation strategies.
For example, as the number of passengers’ reservations grows,
CF, CT, and 𝐶𝑡𝑜𝑡𝑎𝑙 significantly increase and CP slightly
increases as well. This can be easily explained that when
the number of reservations increases, more vehicles will be
needed with a longer total routing distance. And it also
incurs more inconvenience cost. Nevertheless, an interesting
phenomenon is found that for the same transportation
network, when the time horizon becomes longer, CT keeps
increasing while CF and 𝐶𝑡𝑜𝑡𝑎𝑙 dramatically decrease. This is
probably because that shorter time horizon will aggregate the
distribution of passenger reservations in time.That is, for the
same number of reservations, the space-time windows will
become denser in time as the time horizon reduces. Then
it may be more difficult to compete a ridesharing since too
little time left for vehicles to pick up (or deliver) another
passenger after picking up (or delivering) one. Conversely, as
the time horizon increases, it may be easier for passengers to
stagger their travel times and share rides. Thus, by properly
designing the vehicle routing plan, part of the vehicles could
be saved. That is, a small increase for vehicle routing cost
can dramatically save a relatively larger amount of fixed
investment. This can also well explain the reason why larger
transportation network causes the growth of CF and CT.
For the same number of reservations, larger network will
apparently decentralize the distribution of passengers’ space-
time windows in space. Then it may be more difficult to
compete a ridesharing since too long distance for vehicles
to reach another pickup (or delivery) node after picking up
(or delivering) a passenger. Thus, more vehicles are needed
to serve the same number of passengers, which also incurs
longer total traveling distance in total. Nevertheless, we also
find that the increasing rate of CF generally slows down
with the growth of transportation network, while that of CT
presents the opposite trend.This implies that although longer
traveling distance is needed to serve passengers in a larger
transportation network, a properly designed vehicle routing
planmay partly offset the growth trend of vehicle dispatching
cost.

Besides, we can see that CF dominates the variation of𝐶𝑡𝑜𝑡𝑎𝑙 since the fixed cost of dispatching vehicles occupies
a larger proportion of the total system cost. Note that it
is practically reasonable to set the unit initial fixed cost
(i.e., $30 within the operation cycle) larger than the unit
vehicle routing cost (i.e., $0.1 for a vehicle traveling unit
distance) and passenger inconvenience cost (i.e., $0.1 for
walking unit distance or waiting unit time). For the SD of
cost components, we can see that CF is more affected by
the distribution of passenger reservations and apparently
dominate the SD of 𝐶𝑡𝑜𝑡𝑎𝑙. Nevertheless, it can also be seen
that when the scale of transportation network raises to 900,
the SD of CF is generally kept to 14.7. It is probably because
that when the scale of transportation network is big enough,
the dispersion of the number of dispatched vehicles is stable
and predictable, despite the variations of time horizon and
number of passenger reservations.

5.2. Model Sensitive Analysis. In this section, we show a set of
more detailed sensitivity results on how the user demand and
key parameter 𝑐𝑝 affect the optimal vehicle operation strate-
gies. Particularly, the experiments in this section are based
on the 100-node network with 40 timestamps. The values of
benchmark parameters are set the same as Section 5.1.

To demonstrate the efficiency of the ridesharing system
with flexible pickup and delivery locations (termed as space-
time windows pattern and short for STW) in comparison to
that of the conventional one (termed as timewindows pattern
and short for TW), we simultaneously present the optimal
objectives of STW and TW, which is shown as Figures 8(a)
and 8(b). In particular, 𝐶𝑡𝑜𝑡𝑎𝑙/CF/CT/CP-STW, respectively,
denote the total cost and all cost components in STW, while𝐶𝑡𝑜𝑡𝑎𝑙/CF/CT-TW, respectively, denote that in TW (except
CP for constantly being zero in TW). Note that since the
proposed STW is essentially the generalization of TW, we can
simply convert STW to TW by reducing the space window to
only the origin or destination node. Then we see that when
the number of passengers’ reservations grows from 0 to 140,
all the cost components of both STW and TW significantly
increase (which has been well explained in Section 5.1), while
CP keeps a relatively slower increasing rate. Besides, we also
notice that the values of 𝐶𝑡𝑜𝑡𝑎𝑙, CF, and CT in TW are all
bigger than that in STW. This implies that even though
there is additional cost CP, replacing TW with STW, which
actually does not reduce the service quality too much, will
obviously improve the system economy. Furthermore, as the
number of reservations continues to grow from 140 to 200,
the difference between CF-PDPTW and CF-PDPSW keeps
increasing,which dominates that of the total systemcost. And
this trend can be found more obvious between CT-TW and
CT-STW.This suggests that when there aremore reservations
during the operation cycle, adopting STW is amore efficiency
and environmentally friendly solution.

Furthermore, an important issue that evaluates the ser-
vice quality is the inconvenience cost of passengers, which
also affects the optimal vehicle operation strategies. To this
end, we specially verify the variations of total cost and all the
cost components with the magnitudes of coefficient 𝑐𝑝. The
results are shown in Figures 8(c) and 8(d). As 𝑐𝑝 grows from
0 to 1,CP increases dramatically and dominates the growth of𝐶𝑡𝑜𝑡𝑎𝑙. Nevertheless, CF and CT do not change too much and
hence the increasing rate of𝐶𝑡𝑜𝑡𝑎𝑙 is much smaller than that of
CP. This implies that properly increasing the inconvenience
costs, which does not significantly raises the total system
cost, may be a compromise solution to balance the economy
of system operation and the service quality. In practice, the
operator can make some rebates to the passengers to recover
the loose of passengers for the extra walking distance or
waiting time.

6. Conclusion

This paper studied the on-demand ridesharing problem with
flexible pickup and delivery locations for the TNC systems.
By employing a space-time network representation, the
considered problem is formulated as a PDPSW that integrates
the ride-share matching strategy and vehicle routing plan. In
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Figure 8: Sensitivity analyses on number of passengers’ reservations and 𝑐𝑝.
particular, the concept of space-timewindow is introduced to
expand the time windows of passengers in the spatial dimen-
sion. To balance the systemoperation cost and service quality,
we specially took the inconvenience cost of passengers into
consideration in themathematicalmodel. Since the proposed
model is difficult to solve, a customized solution approach
was proposed based on the LR algorithm framework. This
solution algorithm has been evidenced to be efficient and
accurate by a set of numerical examples comparing with
CPLEX. Moreover, the numerical results also revealed some
managerial insights on how the key parameters affect the
optimal operation design results. For example, we found that
adopting the flexible serving strategy, i.e., properly adjusting

the pickup and delivery locations, can evidently reduce the
system cost and improve the passenger-to-vehicle matching
rate without incurring too much extra inconvenience cost.
This validates the importance and necessity of flexible serving
strategy in balancing the system cost and service quality.
Besides, we also saw that increasing the inconvenience costs
will not affect the total system cost. This implies that offering
the passengers with proper rebates in practice will somehow
improve the service quality without bring up the system cost
too much.

The presented model can be further extended in the
following directions: Initially, this study assumes that the
passengers’ reservations are predetermined, and this can
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be extended for some cases where the reservations are
temporally raised or canceled. Thus, an interesting extension
of this study is investigating the PDPSW under the stochastic
or dynamic conditions. Moreover, time-dependent travel
time shall be considered since the link travel time within
urban area could be changeable and valuable for only short-
term prediction. It will be interesting to verify the benefits
of adopting flexible serving strategy under more complex
transportation conditions.

Appendix

To show more details about the computational results of
multiscale instances, we specially select a case in instance
100-40-40 to present the numbers of dispatched vehicles,
the numbers of passengers they serve, the specified pickup
and delivery locations and times, and the travel time of each
vehicle in Table 3. We can see that only one vehicle (# 13)
completes a ridesharing service. That is because the number
of passengers is relatively small with respect to the scale of
the space-time network.This can be demonstrated in Figures
8(a) and 8(b) that when the number of passengers is small
(especially no more than 40), the number of dispatched
vehicles is generally proportional to the number of passengers
with relatively fewer ridesharing services.
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