211 research outputs found

    Heterogeneous Federated Learning on a Graph

    Full text link
    Federated learning, where algorithms are trained across multiple decentralized devices without sharing local data, is increasingly popular in distributed machine learning practice. Typically, a graph structure GG exists behind local devices for communication. In this work, we consider parameter estimation in federated learning with data distribution and communication heterogeneity, as well as limited computational capacity of local devices. We encode the distribution heterogeneity by parametrizing distributions on local devices with a set of distinct pp-dimensional vectors. We then propose to jointly estimate parameters of all devices under the MM-estimation framework with the fused Lasso regularization, encouraging an equal estimate of parameters on connected devices in GG. We provide a general result for our estimator depending on GG, which can be further calibrated to obtain convergence rates for various specific problem setups. Surprisingly, our estimator attains the optimal rate under certain graph fidelity condition on GG, as if we could aggregate all samples sharing the same distribution. If the graph fidelity condition is not met, we propose an edge selection procedure via multiple testing to ensure the optimality. To ease the burden of local computation, a decentralized stochastic version of ADMM is provided, with convergence rate O(T1logT)O(T^{-1}\log T) where TT denotes the number of iterations. We highlight that, our algorithm transmits only parameters along edges of GG at each iteration, without requiring a central machine, which preserves privacy. We further extend it to the case where devices are randomly inaccessible during the training process, with a similar algorithmic convergence guarantee. The computational and statistical efficiency of our method is evidenced by simulation experiments and the 2020 US presidential election data set.Comment: 61 pages, 4 figure

    The suppression of Curie temperature by Sr doping in diluted ferromagnetic semiconductor (La1-xSrx)(Zn1-yMny)AsO

    Full text link
    (La1-xSrx)(Zn1-yMny)AsO is a two dimensional diluted ferromagnetic semiconductor that has the advantage of decoupled charge and spin doping. The substitution of Sr2+ for La3+ and Mn2+ for Zn2+ into the parent semiconductor LaZnAsO introduces hole carriers and spins, respectively. This advantage enables us to investigate the influence of carrier doping on the ferromagnetic ordered state through the control of Sr concentrations in (La1-xSrx)(Zn0.9Mn0.1)AsO. 10 % Sr doping results in a ferromagnetic ordering below TC ~ 30 K. Increasing Sr concentration up to 30 % heavily suppresses the Curie temperature and saturation moments. Neutron scattering measurements indicate that no structural transition occurs for (La0.9Sr0.1)(Zn0.9Mn0.1)AsO below 300 K.Comment: Submitted to EP

    Separation and identification of mouse brain tissue microproteins using top‐down method with high resolution nanocapillary liquid chromatography mass spectrometry

    Get PDF
    Microproteins and endogenous peptides in the brain contain important substances that have critical roles in diverse biological processes, contributing to signal transduction and intercellular signaling. However, variability in their physical or chemical characteristics, such as molecule size, hydrophobicity, and charge states, complicate the simultaneous analysis of these compounds, although this would be highly beneficial for the field of neuroscience research. Here, we present a top-down analytical method for simultaneous analysis of microproteins and endogenous peptides using high- resolution nanocapillary LC-MS/MS. This method is detergent-free and digestion-free, which allows for extracting and preserving intact microproteins and peptides for direct LC-MS analysis. Both higher energy collision dissociation and electron-transfer dissociation fragmentations were used in the LC-MS analysis to increase the identification rate, and bioinformatics tools ProteinGoggle and PEAKS Studio software were utilized for database search. In total, we identified 471 microproteins containing 736 proteoforms, including brain-derived neurotrophic factor and a number of fibroblast growth factors. In addition, we identified 599 peptides containing 151 known or potential neuropeptides such as somatostatin-28 and neuropeptide Y. Our approach bridges the gap for the characterization of brain microproteins and peptides, which permits quantification of a diversity of signaling molecules for biomarker discovery or therapy diagnosis in the future

    Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling

    Get PDF
    The plasma of Parkinson's disease (PD) patients may contain various altered metabolites associated with the risk or progression of the disease. Characterization of the abnormal metabolic pattern in PD plasma is therefore critical for the search for potential PD biomarkers. We collected blood plasma samples from PD patients and used an LC-MS based metabolomics approach to identify 17 metabolites with significantly altered levels. Metabolic network analysis was performed to place the metabolites linked to different pathways. The metabolic pathways involved were associated with tyrosine biosynthesis, glycerol phospholipid metabolism, carnitine metabolism and bile acid biosynthesis, within which carnitine and bile acid metabolites as potential biomarkers are first time reported. These abnormal metabolic changes in the plasma of patients with PD were mainly related to lipid metabolism and mitochondrial function

    Mg2+-dependent facilitation and inactivation of L-type Ca2+ channels in guinea pig ventricular myocytes

    Get PDF
    AbstractThis study aimed to investigate the intracellular Mg2+ regulation of the L-type Ca2+ channels in guinea pig ventricular myocytes. By adopting the inside-out configuration of the patch clamp technique, single channel currents of the L-type Ca2+ channels were recorded at different intracellular Mg2+ concentrations ([Mg2+]i). At free [Mg2+]i of 0, 10−9, 10−7, 10−5, 10−3, and 10−1 M, 1.4 μM CaM + 3 mM ATP induced channel activities of 44%, 117%, 202%, 181%, 147%, and 20% of the control activity in cell-attached mode, respectively, showing a bell-shaped concentration-response relationship. Moreover, the intracellular Mg2+ modulated the Ca2+ channel gating properties, accounting for alterations in channel activities. These results imply that Mg2+ has a dual effect on the L-type Ca2+ channels: facilitation and inhibition. Lower [Mg2+]i maintains and enhances the basal activity of Ca2+ channels, whereas higher [Mg2+]i inhibits channel activity. Taken together, our data from the application of an [Mg2+]i series suggest that the dual effect of Mg2+ upon the L-type Ca2+ channels exhibits long open-time dependence

    Design, synthesis and in vitro anti-Zika virus evaluation of novel Sinefungin derivatives

    Get PDF
    We report herein the design and synthesis of a series of novel Sinefungin (SIN) derivatives, based on the structures of SIN and its analogue EPZ004777. Our results reveal that target compounds 1ad-af, 1ba-bb and 1bf-bh show better activity (IC50 = 4.56–20.16 μM) than EPZ004777 (IC50 = 35.19 μM). Surprisingly, SIN was founded to be not as active (IC50 > 50 μM) as we and other research groups predicted. Interestingly, the intermediates 9a-b and 11b display potent anti-ZIKV potency (IC50 = 6.33–29.98 μM), and compound 9a also exhibits acceptable cytotoxicity (CC50 > 200 μM), suggesting their promising potential to be leads for further development

    mTORC1 controls Golgi architecture and vesicle secretion by phosphorylation of SCYL1

    Get PDF
    mTORC1 is a master regulator of cell growth with well-known functions in inhibiting autophagic vesicle formation. Here, the authors show that mTORC1 also affects Golgi architecture and vesicle secretion by phosphorylating the scaffold protein SCYL1. The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1
    corecore