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The plasma of Parkinson's disease (PD) patients may contain various altered metabolites associated with the risk
or progression of the disease. Characterization of the abnormal metabolic pattern in PD plasma is therefore
critical for the search for potential PD biomarkers. We collected blood plasma samples from PD patients and used
an LC-MS based metabolomics approach to identify 17 metabolites with significantly altered levels. Metabolic
network analysis was performed to place the metabolites linked to different pathways. The metabolic pathways
involved were associated with tyrosine biosynthesis, glycerol phospholipid metabolism, carnitine metabolism
and bile acid biosynthesis, within which carnitine and bile acid metabolites as potential biomarkers are first time
reported. These abnormal metabolic changes in the plasma of patients with PD were mainly related to lipid
metabolism and mitochondrial function.

1. Introduction

Parkinson's disease (PD) is a long-term degenerative disorder of the
central nervous system (CNS) characterized by the motor symptoms
such as shaking, rigidity, slow movement, and difficulty walking [1].
The cause of the motor symptoms is the death of dopaminergic brain
neurons in the brain substantia nigra. The etiology of PD is generally
believed to involve multiple factors, both genetic and environmental,
while the pathogenic mechanism may be related to protein aggregation,
immune inflammation, oxidative stress, and mitochondrial dysfunction
[2,3]. The diagnosis of PD is largely based on the presence of motor
features. However, even when the clinical criteria for PD diagnosis are
strictly applied by movement disorder specialists, they only have a
positive predictive value of 85.7% in advanced disease, and much lower
at early stages [4]. The accuracy of early (duration< 5 years) PD di-
agnosis based on neuropathologic findings is a mere 53% [5]. There has
been an increased interest in earlier intervention with various forms of
exercise in addition to pharmacological treatments [6], such as gene
target [7] and neuroinflammatory intervention [8]. The inability to
accurately diagnose PD before the motor symptoms develop results in a
loss of valuable intervention time. Therefore the development of

reliable diagnostic and prognostic markers of PD, including new bio-
chemical markers, is urgently required [9].

Identification of biomarkers for PD is an important step towards
improving the current diagnostic criteria. Additionally, biomarkers
could provide insights into the disease mechanisms, which in turn could
be used to identify aberrant biochemical pathways and therapeutic
targets for new efficacious medications [10,11]. Previous studies have
used two strategies for biomarker discovery, targeted analysis and un-
biased analysis. Targeted analysis was used to identify uric acid, in-
volved in the oxidative stress pathway [12–14], and tryptophan meta-
bolites, related to energy metabolism [15,16], as biomarkers of PD.
Unbiased analysis has been increasingly utilized in metabolomics-based
studies of disease mechanism since 2008 [17–24]. Not only does this
approach study multiple pathways and quantify small molecules and
their metabolites at the same time, it also offers high sample resolu-
tions, rapid rates of analysis, and the ability to detect dynamic changes
and regular patterns [25,26]. Thus, a metabolic analysis revealed a
general alteration in the N-acetylation of amino acids in the cere-
brospinal fluid (CSF) that was associated with excitotoxicity and oxi-
dative stress in the pathogenesis of PD [27]. This alteration was also
found in the serum of the rapidly progressing PD patients [28]. Several
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amino acids (e.g. tryptophan, histidine, tyrosine), fatty acids with 5 to
22 carbons, and redox metabolites levels were found to be altered in the
plasma or CSF of patients with PD [29–31]. Among urinary biomarkers,
steroidogenesis metabolites other than amino acids were found to be
abnormally regulated in PD [17,32]. Biomarkers identified in clinical
samples can be validated in animal models [33–35]. However, most of
the biomarker findings described above were ultimately based on the
currently known pathogenesis of PD with correlations among various
altered metabolites needing further study.

Blood is the ideal sample for both biomarker discovery and clinical
diagnose because its collection is simple relatively non-invasive, and it's
easy to analyze. Entire, detailed metabolic phenotypes of organs be-
yond the CNS can be obtained from blood plasma that reflect the pa-
thogenesis and pathophysiology of PD [30]. In present study, we sought
to find novel PD biomarkers and pathways, and to investigate the
correlations among them. We used peripheral blood plasma to screen
for metabolic biomarkers in patients with PD to better understand the
disease mechanism. We used liquid chromatography-mass spectrometry
(LC-MS), a technique characterized by a sample preparation procedure
that is simpler than that of gas chromatography-mass spectrometry (GC-
MS) and a higher resolution compared to that of nuclear magnetic re-
sonance (NMR). We also used dual statistical criteria to identify sig-
nificantly altered metabolites level.

2. Material and methods

2.1. Clinical samples

The plasma samples were obtained at the Department of Neurology,
Dalian Central Hospital, China. PD patients were diagnosed according
to International Movement Disorders Society-sponsored Unified
Parkinson's Disease Rating Scale (MDS-UPDRS) criteria. Subjects that
served as controls were healthy people or patients free of PD or PD
symptoms. Blood from 46 participants was all collected in the morning
before patients took food or water, and immediately centrifuged to
obtain plasma. Plasma samples were aliquoted and stored at −80 °C
until LC-MS analysis. Forty-six plasma samples were collected, 18 of
which were controls and 28 PD. According to Hoehn-Yahr (H-Y) staging
in 1967 [36], there are 54% (15/28) in stage H-Y2, 39%(11/28) in
stage H-Y1, 7%(2/28) in stage H-Y4. The female/male ratios were 7/11
for the controls and 12/16 for PD. The average ages were 64 for the
controls and 70 for PD. The gender or age information between the two
groups is comparable.

2.2. Sample preparation

For LC-MS analysis of small molecules in plasma, the first step of
sample preparation is based typically on the removal of proteins via
solvent precipitation [37]. We investigated two aspects of sample pre-
paration, analysis mode, protein precipitation regents and, before
conducting our analyses. With the positive MS collision mode, we ob-
tained dense peaks and far more ions (7892) than with the negative
mode (1408), is also proved by previous study that positive mode gives
more adequate, as shown in reference article [28]. Positive mode shows
a higher analysis efficiency because most of the plasma metabolites
(amino acids, ammonia, glycerophospholipid, and so on) can be better
ionized at positive mode, which is consistent with previous studies that
applied positive mode for plasma metabolomics [38]. We therefore
used the positive mode in all subsequent analyses. We also tested
commonly used protein precipitation reagents including acetonitrile
(ACN) [28,39,40] and methanol (MeOH) [41], which are organic re-
agents of low toxicity. ACN as a protein precipitation reagent performed
better than MeOH: we did not achieve complete protein precipitation
with MeOH, the consistent protein precipitation result was obtained by
previous study [42]. Even though we obtained slightly more ions with
MeOH than ACN, we chose to use ACN because any remaining soluble

protein may interfere with the detection of small molecules. For each
analysis included in this study, 400 μL of plasma was added to 800 μL of
ACN, and immediately vortexed for 2min, followed by centrifugation at
16000×g for 30min at 4 °C. The supernatant was transferred to a clean
tube and lyophilized. The lyophilized powder was redissolved in 80 μL
of 80% ACN (0.2% formic acid) and subjected to ultra-high perfor-
mance liquid chromatography quadrupole time-of-flight mass spectro-
metry (UPLC-Q-TOF-MS) analysis in the positive mode. The quality
control (QC) sample was made by the mixture of 46 redissolved sam-
ples, with 5 μL from each.

2.3. UPLC-Q-TOF-MS data acquisition

Each extracted sample was analyzed using an Agilent 1290 UPLC
system coupled with an Agilent 6520 TOF-MS analyzer. For the UPLC-
Q-TOF-MS analysis, a Zorbax Eclipse plus C18 column (3.0id ∗ 150mm,
1.8 μm; Agilent Technologies, USA) with an on-line filter was used. The
column temperature was maintained at 60 °C, and the injection volume
was 5 μL. The separation was performed using a gradient program with
water (solvent A, modified by the addition of 0.5% acetic acid) and
ACN (solvent B). The pump flow rate was 0.3mL/min with an initial
solvent composition of 5% B. The gradient was conducted from 5% to
100% B over 15min (eluting time), held at 100% B for 5min for
column washing, decreased to 5% B within 30 s, and held at 5% B for
another 5min for column balancing. First peak was eluted at 1.8min, so
the dwell volume of the system is 0.54mL (0.3mL/min×1.8min). To
ensure repeatability of the measurements and stability of the instru-
ment, QC sample was analyzed prior to the first sample injection, after
every eight injections, and at the end of the experiment. The acceptance
criteria of QC data repeatability were that the RT drift of every
peak<0.5min in different QC injections, otherwise all samples will be
re-analyzed when the QC data is outside of the criteria. 46 paticipants'
samples were injected randomly; a repeated analysis cycle was con-
ducted. Mass spectra were acquired in positive electrospray ionization
mode according to our pilot experiment results. The optimal capillary
voltage and the cone voltage were set at 3.5 kV and 40 V, respectively.
The nebulization gas flow rate was set at 8 L/min, and the liquid
nebulizer was set at 40 psi. The temperature was set at 350 °C. Data
were acquired at a rate of 1 spectrum per second for MS and 3 spectra
per second for MS/MS (centroid mode). The collision energy for MS/MS
was 25 eV. The mass scan range was from 100 to 2000 for MS and 20 to
1000 for MS/MS. Chromatographic separation followed by full-scan MS
was carried out to record the RT (retention time) and m/z of all

Fig. 1. Typical chromatograms of the LC-MS data for plasma metabolites.
The high repeatability can be observed in the chromatograms of four QC samples. Peaks
are highly overlapped (the RT drift of peaks are less than 0.5min.), which shows the
stability of LC-MS system during this analysis procedure and the repeatability of all QC
injections. (For interpretation of the references to colour in this figure, the reader is re-
ferred to the online version of this chapter.)
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detectable ions presented in the samples.

2.4. Data analysis and compounds' identification

Peaks in the raw UPLC-Q-TOF-MS data were aligned and extracted

with the ProgenesisQI software (Nonlinear Dynamics, Newcastle, UK).
The raw UPLC-Q-TOF-MS data file was imported with the filter strength
set at 0.3. The ions with absolute abundance lower than 1000 were
discarded, as were any ion before 0.5 min and after 15min. An excel file
containing LC and MS information for each sample was exported after

A

B           

Fig. 2. Metabolomics analysis of samples that contain PD and
control.
PLS-DA analysis shows that the imported ions grouped clinical
samples into two groups PD (green) or control (red) (Fig. 1A)
very well, which indicates that there are metabolites changed
or disordered in PD plasma compared to control. Heat map
(Fig. 1B) get the validated result with PLS-DA. The cell colour
represent the ion abundance or the metabolite level in a
sample, it is high abundance to low abundance from red to
blue. And the group colour at the top of the figure represents
the sample belong to PD (green) or control (red). The set of t-
test ions entirely separates PD (green) and control (red), which
indicates the metabolic model is successful, thus confirming
that there are metabolites changed or disordered in PD plasma
compared to control. (For interpretation of the references to
colour in this figure legend, the reader is referred to the online
version of this chapter.)
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completing a section. Ions in samples were also controlled by QC before
conducting metabolomics analysis. We calculated the RSD value of the
intensity of each ion in all QC data, only ions with relative standard
deviation (RSD) value< 50% in QC samples were considered to be
stable in the whole analysis procedure. Otherwise ions whose RSD in
QC were larger than 50% were discarded in all experimental data. Then
the ions were browsed into MetaboAnalyst 3.0 [43] after conversion to
the comma-separated values (CSV) file format. Statistical analysis was
conducted after preliminary processing consisting of three steps in
MetaboAnalyst 3.0 software. The first step was missing value estimation
and filtration. The assumption of this approach is that most missing
values are caused by low abundance metabolites, while too many
missing values will cause difficulties for downstream analysis. Our
setting is removing the features with missing values in> 80% of the
samples. And the remaining missing values will be replaced by a small
value (half of the minimum positive value in the original data). Next,
data was filtered by its RSD with a default set of the software system.
Finally, samples were normalized by Pareto scaling to make features
more comparable with log transformation. Pareto-scaling is a classical
data normalization mode for metabolomics analysis [44], which is
calculated using mean-centred and divided by the square root of stan-
dard deviation of each variable. Partial least squares discriminant
analysis (PLS-DA) and variable importance in projection (VIP) scores
were computed to determine how well the PD and control groups were
classified by the principal components.

In a search for abnormal metabolites, any ion that passed the t-test
and had a VIP value larger than 1 was determined to be a candidate ion.
A heat-map was calculated to distinguish the PD and control groups as a
model. The pathway analysis tool was applied to obtain the pathway
weight distribution picture and scores. Identification of the biochemical
was achieved through comparison of the ionic features with those in the
Metlin reference library of metabolic standards. These comparisons
were made with data that including RT, m/z, preferred adducts, in-
source fragments, and associated MS/MS spectra. A metabolic network
of the abnormal changed metabolites was constructed according to the
Kyoto Encyclopaedia of Genes and Genomes (KEGG, http://www.
genome.jp/kegg/) pathway database and the Human Metabolome
Database (HMDB [45] http://www.hmdb.ca/).

3. Results and discussion

3.1. Identification of altered ions in the plasma of patients with PD

To investigate the difference in plasma metabolite profiles between
the PD and control groups, the data was subjected to a metabolomics
analysis with MetaboAnalyst 3.0. From the raw LC-MS data, 4013 ions
were extracted, 2637 of which were removed with RSD filtering,
leaving 1376 ions to be browsed into MetaboAnalyst 3.0. PLS-DA refers
to grouping a collection of abstract objects into two groups that consist
of similar objects. As shown in Fig. 1A, the imported ions grouped
clinical samples into two distinct groups, PD (green) and control (red),
indicating altered or dysregulated metabolites in the plasma of patients
with PD compared to control. To confirm the difference in metabolic
profiles between the PD and control groups, we conducted a heat map
analysis. A heat map represents the levels of expression of many ions
across a number of comparable samples. The cell color represented the
ion abundance or metabolite level in a sample, with high abundance in
red and low abundance in blue. The color at the top of the figure re-
presented the PD (green) or control (red) sample group. The ions with t-
test p value lower than 0.05 were used to construct a high-confidence
metabolic classification model. These ions entirely separated PD (green)
and control (red) groups (Fig. 1B), indicating that the model was ac-
curate and confirming the presence of altered or dysregulated meta-
bolites in the plasma of patients with PD. So we can use the data to
search abnormal metabolites.

3.2. Altered ions as potential PD biomarkers

We conducted biomarker analysis to test the PD-predictive power of
altered ions using receiver operating characteristic (ROC) curves, which
is a method of biomarker identification and performance evaluation.
The area under the curve (AUC) was above 0.87 when the top 5, 10, 15,
25, 50, or 100 ions identified as significant in the t-test were used
(Fig. 2A). This result suggested that ions with t-test p values lower than
0.05 as a model was a good predictor of PD. As shown in Fig. 2B, a total
of 195 ions were found with t-test p values lower 0.05. For getting
higher confidence in the discovery of biomarkers, we used an additional
standard with PLS-DA analysis to define significantly changed ions at
the same time with the t-test. A total of 289 ions were found with VIP
values higher than 1. After integration, the overlapping set of 94 ions
that were significant both in the t-test and PLS-DA was used to do

A

B

Fig. 3. Biomarker potentiality of altered ions.
ROC curve was performed using t-test p value lower than 0.05 ions. As shown in Fig. 2A,
the AUC values were all above 0.87 no matter we use the top 5 or 10, 15, 25, 50, 100 t-test
ions to do the biomarker analysis. This result suggested these groups of ions can be a good
predictor to differ PD and control.
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identification for abnormal metabolites (Fig. 3).

3.3. Identification of abnormal PD metabolites

Out of the 94 ions that showed dual statistical significance, we were
able to identify 17 endothelial metabolites by matching their LC-MS
and MS2 characteristics with those found in the HMDB (Fig. 3). These
metabolites were classified in Table 1 according to their structures and
biological functions. For each metabolite, we provided not only the
formula and MS characteristics but also the trend of change in PD
plasma relative to control plasma. The lower the mass error of a me-
tabolite, the higher its statistical confidence.

The abnormal metabolites we found in PD can be divided into the
following main categories: phenolic amino acids (phenylalanine and
tyrosine), fatty acids, glycerol phospholipids, and bile acids. And with
these metabolites, we can better understand the mechanism of PD only
if we know the correlations among them. Phenylalanine is an essential
amino acid and the precursor for tyrosine. Phenylalanine and tyrosine
are both the precursors of catecholamines (tyramine, dopamine, epi-
nephrine, and norepinephrine), which are adrenalin-like substances.
Phenylalanine is highly concentrated in the human brain and plasma
[17]. In our study, the levels of phenylalanine and Vanillactic acid, a
tyrosine metabolite, were increased in the plasma of patients with PD.
One study, reported another catecholamine, homovanillic acid, as a
biomarker of PD [15]. As one review article has reported, the main
amino acids link to PD thus far include tryptophan, tyrosine, and
phenylalanine [46], all of which are involved in mitochondrial meta-
bolism.

Glycerol phospholipids, bile acids, and fatty acids are subunits of
lipids. Among them, bile acids are the most upstream molecules in lipid
metabolism. The unique detergent properties of bile acids are essential
for the digestion and intestinal absorption of hydrophobic nutrients,
dietary fats and vitamins. They also modulate bile flow and lipid se-
cretion, and have been implicated in the regulation of the key enzymes
involved in cholesterol homeostasis [47]. Recent studies have found
that PD patients have abnormal cholesterol levels in their urine [17]. In
the present study, we found that the plasma levels of two bile acids

were altered in patients with PD, suggesting that steroid dysregulation
in PD may be caused by abnormal bile acids production. It is generally
believed that cholesterol is associated with atherosclerosis, which has
inseparable relationships with body weight and obesity. One study re-
ported most PD patients losing weight during the evolution of their
disease [48]. Dysregulation of the hypothalamus, considered to be the
regulatory center of satiety and energy metabolism, could play a major
role in this phenomenon. Our data provide a link between weight loss
and abnormal bile acid metabolism in PD. We identified both elevated
and suppressed levels of lipid metabolites in patients with PD, in-
dicating that the disturbance of lipid metabolism as a whole may play a
key role in PD pathogenesis.

Fatty acid and carnitine metabolism takes place in mitochondria.
Fatty acids have been reported playing a role in PD. For example, one
study emphasized that the supplementation of omega-3 poly-
unsaturated fatty acids presented a potential neuroprotective action in
hemiparkinsonism model [49]. Here we found another Valeric acid and
Docosene's down regulation and 2-Octenoic acid's up-regulation, the
disturbance of fatty acids gives a direction of future PD mechanism
study. Numerous disorders have been described that lead to dis-
turbances in energy production and in intermediary metabolism in the
organism which are characterized by the production and excretion of
unusual acyl carnitines [50]. Both carnitine and 2-methylbutyr-
oylcarnitine were found to be down-regulated in the plasma of patients
with PD in our study. Energy production from long-chain fatty acids
(LCFAs) requires LCFA transport into the mitochondrial matrix. This
transport is carnitine-dependent and involves active translocation ma-
chinery. Therefore, fatty acid metabolism dysregulation may be directly
related to the carnitine metabolic abnormalities in PD patients. Con-
sistent with this hypothesis, others have found decreased levels of
serum LCFAs in individuals with PD [30].

3.4. The abnormal metabolic profile and mechanism of PD

To understand the relationships between abnormal metabolites and
the mechanism of PD, one needs to know the relevant biochemical
pathways and their biological functions. Therefore, we performed

Table 1
Identified endogenousabnormal metabolites in PD plasma (both p < 0.05 and VIP > 1).

Metabolite VIP value t-test p value Fold Change Formula Practical m/z Theatrical m/z △Mass (ppm) HMDB ID

Amino acids metabolites
Phenylalanine 4.2 0.0016 +4.6 C9H11NO2+H+ 166.0865 166.0863 1 HMDB0000159
Vanillactic acid 5.3 0.0006 +24.3 C10H12O5-H2O+H+ 195.0660 195.0664 2 HMDB0000913

Bile acids metabolites
3b–Hydroxy-5-cholenoic acid 2.4 0.0199 +2.7 C24H38O3-H2O+H+ 357.2797 357.2788 2 HMDB0000308
Glycoursodeoxycholic acid 2.7 0.0315 −11.8 C26H43NO5+H+ 450.3224 450.3220 2 HMDB0000708

Glycerol phospholipid metabolites
LysoPC(18:2) 3.0 0.0250 +2.8 C26H50NO7P+Na+ 542.3257 542.3217 7 HMDB0010386
PA(18:2/15:0) 3.7 0.0106 +2.6 C31H60NO8P-2H2O+H+ 623.4414 623.4446 5 HMDB0114948

Fatty acids metabolites
Valeric acid 1.4 0.0108 −1.3 C5H10O2+NH4

+ 120.1024 120.1019 3 HMDB0000892
2-Octenoic acid 1.5 0.0001 +2.3 C8H14O2+NH4

+ 160.1335 160.1332 1 HMDB0000392
Docosene 3.1 0.0043 −1.8 C22H44+Na+ 331.3348 331.3335 4 HMDB0062602

Carnitine metabolites
Carnitine 1.2 0.0351 −4.5 C7H15NO3-H2O+H+ 144.1021 144.1019 1 HMDB0000062
2-Methylbutyroylcarnitine 1.3 0.0046 −1.6 C12H23NO4+H+ 246.1708 246.1700 3 HMDB0000378

Other metabolites
4-Hydroxybenzaldehyde 4.6 0.0007 +10.1 C7H6O2-H2O+H+ 105.0343 105.0340 2 HMDB0011718
Adrenochrome 1.5 0.0196 +16.2 C9H9NO3+H+ 180.0658 180.0655 1 HMDB0012884
Leukotriene B3 3.7 0.0018 +1.7 C20H34O4+NH4

+ 356.2807 356.2795 3 −
Cytidine 2′,3′-cyclic phosphate 2.6 0.0441 +3.8 C9H12N3O7P+H+ 306.0479 306.0486 2 HMDB0011691
3-Methylene-indolenine 1.1 0.0474 +3.3 C9H7N+H+ 130.0654 130.0651 2 HMDB0011664
Heptanoylcholine 3.2 0.0227 −3.3 C12H26NO2-H2O+H+ 199.1943 199.1936 3 HMDB0013239

VIP: Variable Importance in Projection; m/z: ratio of mass to charge. In “Fold change” column, “+” means up-regulated, while “−” means down-regulated; In “HMDB ID” column, ‘−’
means metabolite that is identified only in “Metlin” database.
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pathway analyses of the 17 metabolites dysregulated in PD. Fig. 4A
shows the identified pathways, with more intense colours indicating
higher relevance of a pathway for PD. In general, the primary metabolic
pathways involved in PD were tyrosine biosynthesis, glycerol phos-
pholipid metabolism, and bile acid biosynthesis. The metabolic network
shown in Fig. 4B was constructed using the 17 identified abnormal
metabolites according to the KEGG metabolic pathway database and
the HMDB to show the connections of these metabolites to one another.
From the network, one can see that, besides basic amino acid meta-
bolism dysregulation, there are some metabolic changes involving bile
acids, one of whose biological functions is regulating lipid metabolism.
Lipids include fatty acids and glycerol phospholipids, both of which are
also dysregulated in the plasma of patients with PD. Together, these
observations suggest that the lipid perturbations in PD maybe caused by
abnormal bile acid metabolism.

The carnitine metabolic disturbance we found is evidence of mi-
tochondrial dysfunction in PD. Carnitine-dependent oxidation of fatty
acids is an alternative way of energy production in mitochondria.
Currently, although the pathogenesis of PD is still obscure, over-
whelming evidence demonstrates that oxidative stress plays a role in
the progress of PD [51]. Therefore, the oxidation dysregulation of fatty
acid metabolism dysregulation may be further evidence of mitochon-
drial dysfunction in PD. Because both lipid metabolism and mi-
tochondrial metabolism are direct sources of energy, most of the

abnormal metabolite levels in the plasma of patients with PD appear to
be related to energy production. Perturbed energy production may
therefore play a critical role in PD pathogenesis.

3.5. Summary of abnormal metabolites closely related to PD

Our overall search strategy for potential PD biomarkers is shown in
Fig. 2B. By LC-MS analysis of clinical plasma samples, we obtained
characteristics of 4013 ions representing the condition of the sample.
To make sure the ions used for metabolism analyses were comparable,
only 1376 ions were selected based on the QC sample RSD lower than
50%. To ensure biological significance, we used the t-test to select ions
with abnormal levels and found 195 such ions. Within those 195 ions,
PLS-DA identified 94 ions with VIP values larger than 1. These were
considered high-significance because of their satisfying dual statistical
criteria. After identifying the chemical structures of these 94 ions, we
obtained 17 compounds that were consistently altered in the plasma of
patients with PD.

Compared with the urine and CSF metabolites found in literature, it
is found that the plasma metabolites are upstream, and urine metabo-
lites are downstream [23,24,32,52–54]. Our findings support the ex-
istence of at least three distinct metabolic mechanisms of PD patho-
genesis. First, bile acid dysregulation may directly cause lipid
metabolism dysfunction. Second, perturbations of carnitine metabolism

A

B

Fig. 4. Metabolic mechanism among abnormal metabolites in
plasma of patients with PD.
Pathway analysis (A) are conducted using 17 of identified abnormal
metabolites, and the heavier colour of a pathway means the more
relevant to PD. From a summary way, it shows the primary meta-
bolic pathways closely related to PD are phenylalanine and tyrosine
biosynthesis, glycerol phospholipid metabolism and bile acids bio-
synthesis. The metabolic network (B) show the changing of these
metabolites from an overall view, and the arrow represents their
subordinate relationship. Red-labeled metabolites indicate up-reg-
ulation in PD plasma compared to control, while blue-labeled me-
tabolites indicate down-regulation in PD plasma. From the network
we can observe that except for basic amino acids disorder, there are
metabolic changing among bile acids, carnitine, fatty acids and so
on. (For interpretation of the references to colour in this figure le-
gend, the reader is referred to the online version of this chapter.)
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may directly lead to lower LCFA levels. Third, the abnormal metabolite
levels found in this study may collectively disrupt energy production.

4. Conclusion

Biomarkers could be used for the early diagnosis, tracking disease
progression, and selection of disease-modifying treatments of PD. Up to
date, no reliable biomarkers of early neurodegeneration in PD have
been identified, making discovery of promising PD biomarker candi-
dates critically important. Our study used LC-MS-based metabolism
analyses to find potential PD biomarkers in clinical patients' peripheral
blood plasma samples. We found multiple abnormal changes in meta-
bolite levels in the plasma of patients with PD. Seventeen significantly
dysregulated metabolites were identified to be mainly related to lipid
metabolism and mitochondrial function, both important aspects of en-
ergy metabolism. Our findings indicate that abnormal changes in en-
ergy metabolism might have a direct correlation with PD progression.
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