31 research outputs found

    Adult restoration of Shank3 expression rescues selective autistic-like phenotypes

    Get PDF
    Because autism spectrum disorders are neurodevelopmental disorders and patients typically display symptoms before the age of three, one of the key questions in autism research is whether the pathology is reversible in adults. Here we investigate the developmental requirement of Shank3 in mice, a prominent monogenic autism gene that is estimated to contribute to approximately 1% of all autism spectrum disorder cases. SHANK3 is a postsynaptic scaffold protein that regulates synaptic development, function and plasticity by orchestrating the assembly of post synaptic density macromolecular signalling complex. Disruptions of the Shank3 gene in mouse models have resulted in synaptic defects and autistic-like behaviours including anxiety, social interaction deficits, and repetitive behaviour. We generated a novel Shank3 conditional knock-in mouse model, and show that re-expression of the Shank3 gene in adult mice led to improvements in synaptic protein composition, spine density and neural function in the striatum. We also provide behavioural evidence that certain behavioural abnormalities including social interaction deficit and repetitive grooming behaviour could be rescued, while anxiety and motor coordination deficit could not be recovered in adulthood. Together, these results reveal the profound effect of post-developmental activation of Shank3 expression on neural function, and demonstrate a certain degree of continued plasticity in the adult diseased brain.National Institutes of Health (U.S.) (Grant R01MH097104

    Shank3 mutant mice display autistic-like behaviours and striatal dysfunction

    Get PDF
    Autism spectrum disorders (ASDs) comprise a range of disorders that share a core of neurobehavioural deficits characterized by widespread abnormalities in social interactions, deficits in communication as well as restricted interests and repetitive behaviours. The neurological basis and circuitry mechanisms underlying these abnormal behaviours are poorly understood. SHANK3 is a postsynaptic protein, whose disruption at the genetic level is thought to be responsible for the development of 22q13 deletion syndrome (Phelan–McDermid syndrome) and other non-syndromic ASDs. Here we show that mice with Shank3 gene deletions exhibit self-injurious repetitive grooming and deficits in social interaction. Cellular, electrophysiological and biochemical analyses uncovered defects at striatal synapses and cortico-striatal circuits in Shank3 mutant mice. Our findings demonstrate a critical role for SHANK3 in the normal development of neuronal connectivity and establish causality between a disruption in the Shank3 gene and the genesis of autistic-like behaviours in mice.National Institute of Mental Health (U.S.) (NIMH/NIH (R01MH081201))Hartwell Foundation (Hartwell Individual Biomedical Research Award)Simons Foundation (Autism Research Initiative (SFARI) grant Award)Brain and Behavior Research Foundation (NARSAD Young Investigator Award)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award (F32MH084460))National Institutes of Health (U.S.) (NIH grant (R03MH085224))Fundação para a Ciência e a Tecnologia (SFRH/BD/15231/2004)Fundação para a Ciência e a Tecnologia (SFRH/BD/15855/2005)Instituto Gulbenkian de Ciência (“Programa Gulbenkian de Doutoramento em Biomedicina” (PGDB, Oeiras, Portugal))University of Coimbra. Center for Neuroscience and Cell Biology (“Programa Doutoral em Biologia Experimental e Biomedicina” (CNC, Coimbra, Portugal)

    Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    Get PDF
    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.National Institute of Mental Health (U.S.) (Grant 5R01MH097104

    Combining NGN2 Programming with Developmental Patterning Generates Human Excitatory Neurons with NMDAR-Mediated Synaptic Transmission

    Get PDF
    SUMMARY Transcription factor programming of pluripotent stem cells (PSCs) has emerged as an approach to generate human neurons for disease modeling. However, programming schemes produce a variety of cell types, and those neurons that are made often retain an immature phenotype, which limits their utility in modeling neuronal processes, including synaptic transmission. We report that combining NGN2 programming with SMAD and WNT inhibition generates human patterned induced neurons (hpiNs). Single-cell analyses showed that hpiN cultures contained cells along a developmental continuum, ranging from poorly differentiated neuronal progenitors to well-differentiated, excitatory glutamatergic neurons. The most differentiated neurons could be identified using a CAMK2A::GFP reporter gene and exhibited greater functionality, including NMDAR-mediated synaptic transmission. We conclude that utilizing single-cell and reporter gene approaches for selecting successfully programmed cells for study will greatly enhance the utility of hpiNs and other programmed neuronal populations in the modeling of nervous system disorders

    Mice with Shank3 Mutations Associated with ASD and Schizophrenia Display Both Shared and Distinct Defects

    Get PDF
    Genetic studies have revealed significant overlaps of risk genes among psychiatric disorders. However, it is not clear how different mutations of the same gene contribute to different disorders. We characterized two lines of mutant mice with Shank3 mutations linked to ASD and schizophrenia. We found both shared and distinct synaptic and behavioral phenotypes. Mice with the ASD-linked InsG3680 mutatio n manifest striatal synaptic transmission defects before weaning age and impaired juvenile social interaction, coinciding with the early onset of ASD symptoms. On the other hand, adult mice carrying the schizophrenia-linked R1117X mutation show profound synaptic defects in prefrontal cortex and social dominance behavior. Furthermore, we found differential Shank3 mRNA stability and SHANK1/2 upregulation in these two lines. These data demonstrate that different alleles of the same gene may have distinct phenotypes at molecular, synaptic, and circuit levels in mice, which may inform exploration of these relationships in human patients.National Institute of Mental Health (U.S.) (Grant 5R01MH097104)National Institute of Mental Health (U.S.) (Grant 5DP1-MH100706)National Institutes of Health (U.S.) (Grant R01-NS 07312401
    corecore