16 research outputs found

    Cooperative simultaneous inversion of satellite-based real-time PM2.5 and ozone levels using an improved deep learning model with attention mechanism

    Get PDF
    Ground-level fine particulate matter (PM2.5) and ozone (O3) are air pollutants that can pose severe health risks. Surface PM2.5 and O3 concentrations can be monitored from satellites, but most retrieval methods retrieve PM2.5 or O3 separately and disregard the shared information between the two air pollutants, for example due to common emission sources. Using surface observations across China spanning 2014–2021, we found a strong relationship between PM2.5 and O3 with distinct spatiotemporal characteristics. Thus, in this study, we propose a new deep learning model called the Simultaneous Ozone and PM2.5 inversion deep neural Network (SOPiNet), which allows for daily real-time monitoring and full coverage of PM2.5 and O3 simultaneously at a spatial resolution of 5 km. SOPiNet employs the multi-head attention mechanism to better capture the temporal variations in PM2.5 and O3 based on previous days’ conditions. Applying SOPiNet to MODIS data over China in 2022, using 2019–2021 to construct the network, we found that simultaneous retrievals of PM2.5 and O3 improved the performance compared with retrieving them independently: the temporal R2 increased from 0.66 to 0.72 for PM2.5, and from 0.79 to 0.82 for O3. The results suggest that near-real time satellite-based air quality monitoring can be improved by simultaneous retrieval of different but related pollutants. The codes of SOPiNet and its user guide are freely available online at https://github.com/RegiusQuant/ESIDLM

    Development and experimental research of a low-thermal asphalt material for grouting leakage blocking

    No full text
    Tunnel water burst is among the common severe geological hazards in deep buried tunnel projects in China and throughout the world. Asphalt grouting is an effective method to block seepage channels in macroporous strata under the condition of flowing water, but it has defects such as a high heating temperature, complex high-temperature construction technology, and poor controllability during the grouting process. A type of “water-in-oil” low-thermal asphalt was developed in this study. It can cool and solidify and not be diluted when encountering water, and its construction temperature can be below 80°C. Experimental research on the physical and mechanical properties of the low-thermal asphalt leakage-blocking material was completed, including proportion experiments, fluidity, sensitivity to temperature, one- and two-dimensional indoor diffusion experiments, and impact experiments, which presented its physical and mechanical properties and can provide guidance for the application of the material in site projects

    Numerical Simulation and Optimization of Hole Spacing for Cement Grouting in Rocks

    No full text
    The fine fissures of V-diabase were the main stratigraphic that affected the effectiveness of foundation grout curtain in Dagang Mountain Hydropower Station. Thus, specialized in situ grouting tests were conducted to determine reasonable hole spacing and other parameters. Considering time variation of the rheological parameters of grout, variation of grouting pressure gradient, and evolution law of the fracture opening, numerical simulations were performed on the diffusion process of cement grouting in the fissures of the rock mass. The distribution of permeability after grouting was obtained on the basis of analysis results, and the grouting hole spacing was discussed based on the reliability analysis. A probability of optimization along with a finer optimization precision as 0.1 m could be adopted when compared with the accuracy of 0.5 m that is commonly used. The results could provide a useful reference for choosing reasonable grouting hole spacing in similar projects

    Study of the Mechanical Properties of Beam-Column Joints in a New Type of Aluminum Alloy Portal Frame

    No full text
    In the article, the semi-permanent aluminum alloy portal frame is used as the research background, beam-column joints are used as the research object, and experimental and numerical analyses are carried out. The influence of different bolt diameters and arch angles on the mechanical properties of beam-column joints under vertical load was analyzed using five sets of experiments. The experimental results show that the load–displacement curves of different bolt diameters in the elastic stage are basically consistent. After entering the plastic stage, the ultimate load first increases and then decreases, and the ultimate displacement is basically consistent. According to the experiment, there is no significant difference in the load–displacement curve when the arch angle increases from 90 degrees to 108 degrees. When the arch angle increases to 126 degrees, the stiffness and ultimate bearing capacity of the node under vertical load significantly increase. Then, a numerical analysis model was established to analyze the mechanical performance of beam-column joints under horizontal loads. The numerical analysis results indicate that under horizontal load, as the diameter of the bolt increases, the yield load, yield displacement, ultimate load, and ultimate displacement of the beam-column node exhibit no significant changes, and the change amplitude is minimal. When the beam-column node is subjected to horizontal loads, as the arch angle increases, the yield and ultimate displacement increase by 2.14 times and 2.78 times, respectively, and the yield and ultimate load decrease by 58% and 48%, respectively. Finally, a simplified design method for beam-column joints was proposed based on experiments and numerical analysis

    Dynamic Modeling and Simulation of Quick-Setting Slurry with Spatiotemporal Rheological Properties

    No full text
    Abstract A major concern in underground infrastructures is how to sufficiently seal the area from water ingress. To achieve this, grout needs to be spread adequately in the surrounding fractures. Cement-based composite grouting is probably the best method for this purpose because of its lower costs and reduced environmental impacts. Chemical reaction accompanied by the flow is a prominent feature of cement-based composites. Rheological properties, especially yield stress and viscosity, are non-uniformly distributed in time and space. In this paper, the rheological properties of quick-setting slurry of cement-based composites were measured over time, and the rheology constitutive equation including time was established based on non-Newtonian fluids. Considering the rheological properties, the Lagrangian method was introduced to track their space–time distribution, and then a dynamic model of quick-setting slurry was established based on continuity equation and momentum equation. The relationship between time-varying rheological characteristics and flow field characteristics was obtained through a numerical simulation of equal pressure injection and equal flux injection. The simulation results were compared with the experimental results in the references, thereby verifying the reliability and accuracy of the model. Results show that the local erosion state and local sealing effect of grouting directly depend on the yield stress of different positions in the flow field. The yield stress of quick-setting slurry increases rapidly with time, which is more likely to affect the flow field, and the viscosity of the slurry has a small effect on the flow field

    Effects of age on differential resistance to duck hepatitis A virus genotype 3 in Pekin ducks by 16 S and transcriptomics

    No full text
    Duck hepatitis A virus genotype 3 (DHAV-3) is the major cause of viral hepatitis in ducks in Asia. Previous studies have shown that ducklings younger than 21 days are more susceptible to DHAV-3. To elucidate the mechanism by which age affects the differential susceptibility of Pekin ducks to DHAV-3, intestinal (n = 520), liver (n = 40) and blood (n = 260) samples were collected from control and DHAV-3-infected ducks at 7, 10, 14, and 21 days of age. Comparisons of plasma markers, mortality rates, and intestinal histopathological data showed that the resistance of Pekin ducks to DHAV-3 varied with age. 16 S sequencing revealed that the ileal microbial composition was influenced by age, and this correlation was greater than that recorded for caecal microbes. Candidatus Arthromitus, Bacteroides, Corynebacterium, Enterococcus, Romboutsia, and Streptococcus were the differntially abundant microbes in the ileum at the genus level after DHAV-3 infection and were significantly correlated with 7 differentially expressed genes (DEGs) in 7- and 21-day-old ducklings. 3 immunity-related pathways were significantly different between 7- and 21-day-old ducklings, especially for IFIH1-mediated induction of the interferon-alpha/beta pathway, which induces differential production of CD8(+) T cells and was influenced by a combination of differentially abundant microbiota and DEGs. We found that microbes in the ileum changed regularly with age. The intestinal microbiota was associated with the expression of genes in the liver through IFIH1-mediated induction of the interferon-alpha/beta pathway, which may partially explain why younger ducklings were more susceptible to DHAV-3 infection

    Leaf traits and temperature shape the elevational patterns of phyllosphere microbiome

    No full text
    Aim The phyllosphere microbiome is central to plant health, distribution, and ecosystem function, yet, we lack a clear understanding of the drivers shaping their diversity in mountain ranges. Here, we examined how the endo‐ and epiphytic phyllosphere microbiomes of mountains simultaneously respond to climate and leaf functional traits. Location Temperate forests of Changbai Mountain Natural Reserve, China. Methods We collected the leaves of dominant tree species along seven elevations from 800 to 1950. We investigated changes in species richness and Shannon diversity of endo‐ and epiphytic phyllosphere fungal and bacterial communities (using next‐generation sequencing of ITS2 and 16S) along an 1150 m elevational gradient. We also examined the direct and indirect effects of climate (mean annual temperature; MAT) and 13 leaf morphological and chemical traits on the microbiome of the phyllosphere. Results Phyllosphere microbiome declined monotonically with increasing elevation, contrasting with the hump‐shaped biodiversity patterns that are commonly reported. We observed a steeper decline in epiphytic bacterial diversity than in endophytic bacteria, whereas conversely endophytic fungi diversity declined more dramatically with increasing elevation than epiphytic fungi. Host plant traits – those involved in resource uptake and leaf surface temperature – predominantly shaped the elevational patterns of endophytic phyllosphere microbiome, whereas MAT mostly increased the richness and Shannon diversity of epiphytic organisms. We also observed weak, but significant indirect effects suggesting that host plant traits are important biotic drivers mediating climate effects on endophytic phyllosphere microbiome. Also, no covariation between bacteria and fungi was observed (neither for endophytic nor for epiphytic organisms), supporting neutral associations between bacterial and fungal communities, irrespective of the elevation. Main Conclusions Both direct and mediating effects of plant traits should be considered to better understand the drivers shaping the richness and Shannon diversity of endo‐ and epiphytic phyllosphere microbiomes, and more generally the plant–microbe associations. Our study also offers a trait‐based attempt to disentangle the effects of biotic and abiotic filters in shaping endo‐ and epiphytic phyllosphere microbiome along an elevational gradient

    Enhanced rock weathering increased soil phosphorus availability and altered root phosphorus‐acquisition strategies

    No full text
    International audienceAbstract Enhanced rock weathering (ERW) has been proposed as a measure to enhance the carbon (C)‐sequestration potential and fertility of soils. The effects of this practice on the soil phosphorus (P) pools and the general mechanisms affecting microbial P cycling, as well as plant P uptake are not well understood. Here, the impact of ERW on soil P availability and microbial P cycling functional groups and root P‐acquisition traits were explored through a 2‐year wollastonite field addition experiment in a tropical rubber plantation. The results show that ERW significantly increased soil microbial carbon‐use efficiency and total P concentrations and indirectly increased soil P availability by enhancing organic P mobilization and mineralization of rhizosheath carboxylates and phosphatase, respectively. Also, ERW stimulated the activities of P‐solubilizing ( gcd , ppa and ppx ) and mineralizing enzymes ( phoADN and phnAPHLFXIM ), thus contributing to the inorganic P solubilization and organic P mineralization. Accompanying the increase in soil P availability, the P‐acquisition strategy of the rubber fine roots changed from do‐it‐yourself acquisition by roots to dependence on mycorrhizal collaboration and the release of root exudates. In addition, the direct effects of ERW on root P‐acquisition traits (such as root diameter, specific root length, and mycorrhizal colonization rate) may also be related to changes in the pattern of belowground carbon investments in plants. Our study provides a new insight that ERW increases carbon‐sequestration potential and P availability in tropical forests and profoundly affects belowground plant resource‐use strategies
    corecore