6 research outputs found

    Abstract P-27: The 30S Ribosomal Subunit Assembly Factor Rbfa Plays a Key Role in the Formation of the Central Pseudoknot and in the Correct Docking of Helix 44 of the Decoding Center

    Get PDF
    Background: Ribosome biogenesis is a complicated multi-stage process. In the cell, 30S ribosomal subunit assembly is fast and efficient, proceeding with the help of numerous assembly protein factors. The exact role of most assembly factors and mechanistic details of their operation remain unclear. The combination of genetic modification with cryo-EM analysis is widely used to identify the role of protein factors in assisting specific steps of the ribosome assembly process. The strain with knockout of a single assembly factor gene accumulates immature ribosomal particles which structural characterization reveals the information about the reactions catalyzed by the corresponding factor. Methods: We isolated the immature 30S subunits (pre-30S subunits) from the Escherichia coli strain lacking the rbfA gene (ΔrbfA) and characterized them by cryo-electron microscopy (cryo-EM). Results: Deletion of the assembly factor RbfA caused a substantial distortion of the structure of an important central pseudoknot which connects three major domains of 30S subunit and is necessary for ribosome stability. It was shown that the relative order of the assembly of the 3′ head domain and the docking of the functionally important helix 44 depends on the presence of RbfA. The formation of the central pseudoknot may promote stabilization of the head domain, likely through the RbfA-dependent maturation of the neck helix 28. The cryo-EM maps for pre-30S subunits were divided into the classes corresponding to consecutive assembly intermediates: from the particles with completely unresolved head domain and unfolded central pseudoknot to almost mature 30S subunits with well-resolved body, platform, and head domains and with partially distorted helix 44. Cryo-EM analysis of ΔrbfA 30S particles revealing the accumulation of two predominant classes of early and late intermediates (obtained at 2.7 Å resolutions) allowed us to suggest that RbfA participate in two stages of the 30S subunit assembly and is deeper involved in the maturation process than previously thought. Conclusion: In summary, RbfA acts at two distinctive 30S assembly stages: early formation of the central pseudoknot including the folding of the head, and positioning of helix 44 in the decoding center at a later stage. An update to the model of factor-dependent 30S maturation was proposed, suggesting that RfbA is involved in most of the subunit assembly process

    Quantitative analysis of ribosome–mRNA complexes at different translation stages

    Get PDF
    Inhibition of primer extension by ribosome–mRNA complexes (toeprinting) is a proven and powerful technique for studying mechanisms of mRNA translation. Here we have assayed an advanced toeprinting approach that employs fluorescently labeled DNA primers, followed by capillary electrophoresis utilizing standard instruments for sequencing and fragment analysis. We demonstrate that this improved technique is not merely fast and cost-effective, but also brings the primer extension inhibition method up to the next level. The electrophoretic pattern of the primer extension reaction can be characterized with a precision unattainable by the common toeprint analysis utilizing radioactive isotopes. This method allows us to detect and quantify stable ribosomal complexes at all stages of translation, including initiation, elongation and termination, generated during the complete translation process in both the in vitro reconstituted translation system and the cell lysate. We also point out the unique advantages of this new methodology, including the ability to assay sites of the ribosomal complex assembly on several mRNA species in the same reaction mixture

    Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA

    Get PDF
    The time course of polysome formation was studied in a long-term wheat germ cell-free translation system using sedimentation and electron microscopy techniques. The polysomes were formed on uncapped luciferase mRNA with translation-enhancing 5′ and 3′ UTRs. The formation of fully loaded polysomes was found to be a long process that required many rounds of translation and proceeded via several phases. First, short linear polysomes containing no more than six ribosomes were formed. Next, folding of these polysomes into short double-row clusters occurred. Subsequent gradual elongation of the clusters gave rise to heavy-loaded double-row strings containing up to 30–40 ribosomes. The formation of the double-row polysomes was considered to be equivalent to circularization of polysomes, with antiparallel halves of the circle being laterally stuck together by ribosome interactions. A slow exchange with free ribosomes and free mRNA observed in the double-row type polysomes, as well as the resistance of translation in them to AMP-PNP, provided evidence that most polysomal ribosomes reinitiate translation within the circularized polysomes without scanning of 5′ UTR, while de novo initiation including 5′ UTR scanning proceeds at a much slower rate. Removal or replacements of 5′ and 3′ UTRs affected the initial phase of translation, but did not prevent the formation of the double-row polysomes during translation

    RbfA Is Involved in Two Important Stages of 30S Subunit Assembly: Formation of the Central Pseudoknot and Docking of Helix 44 to the Decoding Center

    No full text
    Ribosome biogenesis is a highly coordinated and complex process that requires numerous assembly factors that ensure prompt and flawless maturation of ribosomal subunits. Despite the increasing amount of data collected, the exact role of most assembly factors and mechanistic details of their operation remain unclear, mainly due to the shortage of high-resolution structural information. Here, using cryo-electron microscopy, we characterized 30S ribosomal particles isolated from an Escherichia coli strain with a deleted gene for the RbfA factor. The cryo-EM maps for pre-30S subunits were divided into six classes corresponding to consecutive assembly intermediates: from the particles with a completely unresolved head domain and unfolded central pseudoknot to almost mature 30S subunits with well-resolved body, platform, and head domains and partially distorted helix 44. The structures of two predominant 30S intermediates belonging to most populated classes obtained at 2.7 Å resolutions indicate that RbfA acts at two distinctive 30S assembly stages: early formation of the central pseudoknot including folding of the head, and positioning of helix 44 in the decoding center at a later stage. Additionally, it was shown that the formation of the central pseudoknot may promote stabilization of the head domain, likely through the RbfA-dependent maturation of the neck helix 28. An update to the model of factor-dependent 30S maturation is proposed, suggesting that RfbA is involved in most of the subunit assembly process
    corecore