25 research outputs found

    A de novo Genome of a Chinese Radish Cultivar

    Get PDF
    AbstractHere, we report a high-quality draft genome of a Chinese radish (Raphanus sativus) cultivar. This draft contains 387.73Mb of assembled scaffolds, 83.93% of the scaffolds were anchored onto nine pseudochromosomes and 95.09% of 43 240 protein-coding genes were functionally annotated. 184.75Mb (47.65%) of repeat sequences was identified in the assembled genome. By comparative analyses of the radish genome against 10 other plant genomes, 2 275 genes in 780 gene families were found unique to R. sativus. This genome is a good reference for genomic study and of great value for genetic improvement of radish

    Waist Circumference Might Be a Predictor of Primary Liver Cancer: A Population-Based Cohort Study

    Get PDF
    Background: Waist circumference, as an indicator of central adiposity, has been identified as an important predictor of several specific cancers such as colorectal cancer and gastroesophageal cancer risk, however, a consensus regarding the association between waist circumference and primary liver cancer (PLC) risk has not been reached.Methods: A total of 104,825 males participating in the health checkup were included in the Kailuan male cohort study (2006–2015). Information on demographic and socioeconomic characteristics, lifestyle, medical records, and anthropometric measures were collected. Restricted cubic spline (RCS) and Cox proportional hazards regression models were used to estimate the hazard ratio (HR) and 95% confidence interval (CI) of association between waist circumference and the risk of PLC in males.Results: During a median of 8.9 years of follow-up, 346 PLC cases were newly diagnosed in the cohort. The RCS model showed a U-shaped association between waist circumference and PLC risk (P-overall = 0.019, P-non-linear = 0.017). Overally, males with both high waist circumference (HRQ5vs.Q3 = 1.98, 95%CI: 1.39–2.82) and low waist circumference (HRQ1vs.Q3 = 1.52, 95%CI: 1.02–2.27) had an increased risk of PLC. Especially, the U-shaped association between waist circumference and PLC risk tended to be strengthened among subjects with hepatitis B surface antigen (HBsAg) negativity (HRQ5vs.Q3 = 2.39, 95%CI: 1.43–3.98; HRQ1vs.Q3 = 2.27, 95%CI = 1.29–4.01).Conclusions: Waist circumference might be an independent predictor of PLC risk in males, especially for subjects with HBsAg negativity. Controlling waist circumference in an appropriate range might be an effective primary prevention to decrease PLC risk

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al

    Genome of Wild Olive and the Evolution of Oil Biosynthesis

    Get PDF
    Here we present the genome sequence and annotation of the wild olive tree (Olea europaea var. sylvestris), called oleaster, which is considered an ancestor of cultivated olive trees. More than 50,000 protein-coding genes were predicted, a majority of which could be anchored to 23 pseudochromosomes obtained through a newly constructed genetic map. The oleaster genome contains signatures of two Oleaceae lineage-specific paleopolyploidy events, dated at similar to 28 and similar to 59 Mya. These events contributed to the expansion and neo-functionalization of genes and gene families that play important roles in oil biosynthesis. The functional divergence of oil biosynthesis pathway genes, such as FAD2, SACPD, EAR, and ACPTE, following duplication, has been responsible for the differential accumulation of oleic and linoleic acids produced in olive compared with sesame, a closely related oil crop. Duplicated oleaster FAD2 genes are regulated by an siRNA derived from a transposable element-rich region, leading to suppressed levels of FAD2 gene expression. Additionally, neofunctionalization of members of the SACPD gene family has led to increased expression of SACPD2,3, 5, and 7, consequently resulting in an increased desaturation of steric acid. Taken together, decreased FAD2 expression and increased SACPD expression likely explain the accumulation of exceptionally high levels of oleic acid in olive. The oleaster genome thus provides important insights into the evolution of oil biosynthesis and will be a valuable resource for oil crop genomics

    The CPNE Family and Their Role in Cancers

    Get PDF
    Lung cancer is the leading cause of cancer-related deaths worldwide. Despite significant advances in cancer research and treatment, the overall prognosis of lung cancer patients remains poor. Therefore, the identification for novel therapeutic targets is critical for the diagnosis and treatment of lung cancer. CPNEs (copines) are a family of membrane-bound proteins that are highly conserved, soluble, ubiquitous, calcium dependent in a variety of eukaryotes. Emerging evidences have also indicated CPNE family members are involved in cancer development and progression as well. However, the expression patterns and clinical roles in cancer have not yet been well understood. In this review, we summarize recent advances concerning CPNE family members and provide insights into new potential mechanism involved in cancer development

    MIR‐138‐5P inhibits the progression of prostate cancer by targeting FOXC1

    No full text
    Abstract Background Studies have suggested that micro‐RNAs (miRNAs) can function as an oncogene or a tumor suppressor in cancers. However, the role of MIR‐138‐5P (613394) in prostate cancer (PCa) remains unclear. Methods Expression level of MIR‐138‐5P in PCa cell lines and normal cell line was analyzed with the quantitative real‐time PCR method. Cell counting kit‐8 assay, colony formation assay, wound‐healing assay, and transwell invasion assay were performed to analyze the biological functions of MIR‐138‐5P. Results We showed MIR‐138‐5P expression level was significantly decreased in PCa cell lines compared with the normal cell line. Overexpression of MIR‐138‐5P inhibits PCa cell proliferation, colony formation, cell migration, and cell invasion in vitro. Mechanistically, we showed Forkhead box C1 (FOXC1, 601090) was a direct target for MIR‐138‐5P in PCa. We confirmed that overexpression of FOXC1 partially reversed the effects of MIR‐138‐5P on PCa cell behaviors. Conclusions Collectively, we showed that MIR‐138‐5P functions as a tumor suppressor gene in PCa via targeting FOXC1

    Analysis on Cloning and Expression of Histone Demethylase Gene OsJMJ719 in Rice

    No full text
    【Objective】A novel rice histone demethylase gene OsJMJ719 was cloned. The expression pattern of this gene under abiotic stress was analyzed to provide theoretical basis for exploring the function of OsJMJ719 in response to abiotic stress.【Method】The complete OsJMJ719 gene was obtained by cloning with ZH11 as material. 35S: : OsJMJ719-GFP expression vector integrated with OsJMJ719 and green fluorescent protein was established for subcellular localization. Transient tobacco expression system and rice protoplast transformation method was employed to observe the subcellular localization and real-time PCR was used to analyze the expression profile of OsJMJ719 in different tissues of rice and the expression pattern under abiotic stress treatments.【Result】The coding region of OsJMJ719 gene (LOC_Os02g01940) is 2 994 bp in length, encoding 997 amino acids. The promoter region of OsJMJ719 contains 10 phytohormone response elements and 3 environmental stress regulation related elements. Phylogenetic analysis shows that OsJMJ719 has high homology with JMJ protein in wild Zizania palustris, Aegilops tauschii, Triticum aestivum and Hordeum vulgare. The subcellular localization results reveal that OsJMJ719 protein is localized in the nucleus. Fluorescence quantitative results reveal that OsJMJ719 is highly expressed in seeds, and the expression of this gene is induced by ABA, NaCl and PEG6000, suggesting that it plays an important role in the process of abiotic stress.【Conclusion】The study shows the location of OsJMJ719 in the phylogenetic tree and its homologous species, reveals the localization, structure and characteristics of the protein, and the main external factors responsible for the regulation of this gene. These results provide a fundamental data basis for further research on the function of OsJMJ719 gene

    The effect of periapical bone defects on stress distribution in teeth with periapical periodontitis: a finite element analysis

    No full text
    Abstract Background Apical periodontitis directly affects the stress state of the affected tooth owing to the destruction of the periapical bone. Understanding the mechanical of periapical bone defects/tooth is clinically meaningful. In this study, we evaluate the effect of periapical bone defects on the stress distribution in teeth with periapical periodontitis using finite element analysis. Methods Finite element models of normal mandibular second premolars and those with periapical bone defects (spherical defects with diameters of 5, 10, 15, and 20 mm) were created using a digital model design software. The edges of the mandible were fixed and the masticatory cycle was simplified as oblique loading (a 400 N force loaded obliquely at 45° to the long axis of the tooth body) to simulate the tooth stress state in occlusion and analyze the von Mises stress distribution and tooth displacement distribution in each model. Results Overall analysis of the models: Compared to that in the normal model, the maximum von Mises stresses in all the different periapical bone defect size models were slightly lower. In contrast, the maximum tooth displacement in the periapical bone defect model increased as the size of the periapical bone defect increased (2.11–120.1% of increase). Internal analysis of tooth: As the size of the periapical bone defect increased, the maximum von Mises stress in the coronal cervix of the tooth gradually increased (2.23–37.22% of increase). while the von Mises stress in the root apical region of the tooth showed a decreasing trend (41.48–99.70% of decrease). The maximum tooth displacement in all parts of the tooth showed an increasing trend as the size of the periapical bone defect increased. Conclusions The presence of periapical bone defects was found to significantly affect the biomechanical response of the tooth, the effects of which became more pronounced as the size of the bone defect increased

    The effect of root canal treatment and post-crown restorations on stress distribution in teeth with periapical periodontitis: a finite element analysis

    No full text
    Abstract Aim To evaluate the effects of root canal treatment (RCT) and post-crown restoration on stress distribution in teeth with periapical bone defects using finite element analysis. Methodology Finite element models of mandibular second premolars and those with periapical bone defects (spherical defects with diameters of 5, 10, 15, and 20 mm) were created using digital model design software. The corresponding RCT and post-crown restoration models were constructed based on the different sizes of periapical bone defect models. The von Mises stress and tooth displacement distributions were comprehensively analyzed in each model. Results Overall analysis of the models: RCT significantly increased the maximum von Mises stresses in teeth with periapical bone defects, while post-crown restoration greatly reduced the maximum von Mises stresses. RCT and post-crown restoration slightly reduced tooth displacement in the affected tooth. Internal analysis of tooth: RCT dramatically increased the maximum von Mises stress in all regions of the tooth, with the most pronounced increase in the coronal surface region. The post-crown restoration balances the internal stresses of the tooth and is most effective in periapical bone defect − 20-mm model. RCT and post-crown restoration slightly reduced the tooth displacement in all regions of the affected tooth. Conclusions Root canal treatment seemed not to improve the biomechanical state of teeth with periapical bone defects. In contrast, post-crown restoration might effectively balance the stress concentrations caused by periapical bone defects, particularly extensive ones

    Tuning the Surface Properties of Graphene Oxide by Surface-Initiated Polymerization of Epoxides: An Efficient Method for Enhancing Gas Separation

    No full text
    Here, we describe an in situ approach for growing polyepoxides from the surfaces of graphene oxide (GO) using a surface-initiated polymerization reaction. The polymerization methodology is facile and general as a broad range of epoxides carrying various functional groups have been successfully polymerized by simply adding GO powders in the epoxide monomers. The resultant polyepoxide grafted GO are found to show enhanced dispersibility in various common solvents and to exhibit increased d-spacing between the basal planes. In particular, grafting poly(2,3-epoxy-1-propanol) (PEP) to GO results in a composite (i.e., GO-g-PEP) that is dispersible in water and miscible with polyether block amide, i.e., Pebax MH 1657. Preliminary studies have indicated the membranes prepared using Pebax/GO-g-PEP composites exhibit enhanced CO2 permeabilities and selectivities in comparison to H2, O2, or N2. The excellent performance in gas separation is attributed to the layered structure of the GO-g-PEP sheets with enlarged d-spacing and the functional groups present on the PEP chains grafted to the surfaces of GO sheets.clos
    corecore