804 research outputs found

    The disruption of proteostasis in neurodegenerative diseases

    Get PDF
    Cells count on surveillance systems to monitor and protect the cellular proteome which, besides being highly heterogeneous, is constantly being challenged by intrinsic and environmental factors. In this context, the proteostasis network (PN) is essential to achieve a stable and functional proteome. Disruption of the PN is associated with aging and can lead to and/or potentiate the occurrence of many neurodegenerative diseases (ND). This not only emphasizes the importance of the PN in health span and aging but also how its modulation can be a potential target for intervention and treatment of human diseases.info:eu-repo/semantics/publishedVersio

    Prenatal exposures and exposomics of asthma

    Get PDF
    This review examines the causal investigation of preclinical development of childhood asthma using exposomic tools. We examine the current state of knowledge regarding early-life exposure to non-biogenic indoor air pollution and the developmental modulation of the immune system. We examine how metabolomics technologies could aid not only in the biomarker identification of a particular asthma phenotype, but also the mechanisms underlying the immunopathologic process. Within such a framework, we propose alternate components of exposomic investigation of asthma in which, the exposome represents a reiterative investigative process of targeted biomarker identification, validation through computational systems biology and physical sampling of environmental medi

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Pin1 and neurodegeneration: a new player for prion disorders?

    Get PDF
    Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders

    Determination of the number of light neutrino species from single photon production at LEP

    Get PDF
    A determination of the number of light neutrino families performed by measuring the cross section of single photon production in e+e- collision near the Z resonance is reported. From an integrated luminosity of 100 pb-1, collected during the years 1991-94, we have observed 2091 single photon candidates with an energy above 1 GeV in the polar angular region 45° <θγ <135°. From a maximum likelihood fit to the single photon cross section, the Z decay width into invisible particles is measured to be ⌈inv=498± 12(stat)± 12(sys) MeV. Using the Standard Model couplings of neutrinos to the Z, the number of light neutrino species is determined to be Nv=2.98± 0.07(stat)± 0.07(sys)

    Effects of rapid urbanisation on the urban thermal environment between 1990 and 2011 in Dhaka Megacity, Bangladesh

    Get PDF
    This study investigates the influence of land-use/land-cover (LULC) change on land surface temperature (LST) in Dhaka Megacity, Bangladesh during a period of rapid urbanisation. LST was derived from Landsat 5 TM scenes captured in 1990, 2000 and 2011 and compared to contemporaneous LULC maps. We compared index-based and linear spectral mixture analysis (LSMA) techniques for modelling LST. LSMA derived biophysical parameters corresponded more strongly to LST than those produced using index-based parameters. Results indicated that vegetation and water surfaces had relatively stable LST but it increased by around 2 °C when these surfaces were converted to built-up areas with extensive impervious surfaces. Knowledge of the expected change in LST when one land-cover is converted to another can inform land planners of the potential impact of future changes and urges the development of better management strategies

    近世の流通システムと産業組織:宿駅と酒造業の経済的機能に関する考察

    Get PDF

    Coexistence of the spin-density-wave and superconductivity in the (Ba,K)Fe2As2

    Full text link
    The relation between the spin-density-wave (SDW) and superconducting order is a central topic in current research on the FeAs-based high Tc superconductors. Conflicting results exist in the LaFeAs(O,F)-class of materials, for which whether the SDW and superconductivity are mutually exclusive or they can coexist has not been settled. Here we show that for the (Ba,K)Fe2As2 system, the SDW and superconductivity can coexist in an extended range of compositions. The availability of single crystalline samples and high value of the energy gaps would make the materials a model system to investigate the high Tc ferropnictide superconductivity.Comment: 4 pages, 5 figure

    Estimated GFR and the Effect of Intensive Blood Pressure Lowering after Acute Intracerebral Hemorrhage

    Get PDF
    Background: The kidney-brain interaction has been a topic of growing interest. Past studies of the effect of kidney function on intracerebral hemorrhage (ICH) outcomes have yielded inconsistent findings. Although the second, main phase of the Intensive Blood Pressure Reduction in Acute Cerebral Hemorrhage Trial (INTERACT2) suggests the effectiveness of early intensive blood pressure (BP) lowering in improving functional recovery after ICH, the balance of potential benefits and harms of this treatment in those with decreased kidney function remains uncertain. Study Design: Secondary analysis of INTERACT2, which randomly assigned patients with ICH with elevated systolic BP (SBP) to intensive (target SBP 90, 60-90, and <60 mL/min/1.73 m2, respectively). Outcomes: The effect of admission eGFR on the primary outcome of death or major disability at 90 days (defined as modified Rankin Scale scores of 3-6) was analyzed using a multivariable logistic regression model. Potential effect modification of intensive BP lowering treatment by admission eGFR was assessed by interaction terms. Results: Of 2,623 included participants, 912 (35%) and 280 (11%) had mildly and moderately/severely decreased eGFRs, respectively. Patients with moderately/severely decreased eGFRs had the greatest risk for death or major disability at 90 days (adjusted OR, 1.82; 95% CI, 1.28-2.61). Effects of early intensive BP lowering were consistent across different eGFRs (P = 0.5 for homogeneity). Limitations: Generalizability issues arising from a clinical trial population. Conclusions: Decreased eGFR predicts poor outcome in acute ICH. Early intensive BP lowering provides similar treatment effects in patients with ICH with decreased eGFRs
    corecore