49 research outputs found

    Vinyl ethylene sulfite as a new additive in propylene carbonate-based electrolyte for lithium ion batteries

    Get PDF
    Vinyl ethylene sulfite (VES) is studied as a new additive in propylene carbonate (PC)-based electrolyte for lithium ion batteries. The electrochemical results show that the artificial graphite material exhibits excellent electrochemical performance in a PC-based electrolyte with the addition of the proper amount of VES. According to our spectroscopic results, VES is reduced to ROSO2Li (R=C4H6), Li2SO3 and butadiene (C4H6) through an electrochemical process which precedes the decomposition of PC. Furthermore, some of the Li2SO3 could be further reduced to Li2S and Li2O. All of these products are proven to be components of the solid electrolyte interface (SEI ) layer.National Natural Science Foundation of China (NNSFC) [29925310, 20433060, 20473068]; Ministry of Science and Technology, China [2007CB209702

    Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird

    Get PDF
    Low oxygen and temperature pose key physiological challenges for endotherms living on the Qinghai–Tibetan Plateau (QTP). Molecular adaptations to high‐altitude living have been detected in the genomes of Tibetans, their domesticated animals and a few wild species, but the contribution of transcriptional variation to altitudinal adaptation remains to be determined. Here we studied a top QTP predator, the saker falcon, and analysed how the transcriptome has become modified to cope with the stresses of hypoxia and hypothermia. Using a hierarchical design to study saker populations inhabiting grassland, steppe/desert and highland across Eurasia, we found that the QTP population is already distinct despite having colonized the Plateau <2000 years ago. Selection signals are limited at the cDNA level, but of only seventeen genes identified, three function in hypoxia and four in immune response. Our results show a significant role for RNA transcription: 50% of upregulated transcription factors were related to hypoxia responses, differentiated modules were significantly enriched for oxygen transport, and importantly, divergent EPAS1 functional variants with a refined co‐expression network were identified. Conservative gene expression and relaxed immune gene variation may further reflect adaptation to hypothermia. Our results exemplify synergistic responses between DNA polymorphism and RNA expression diversity in coping with common stresses, underpinning the successful rapid colonization of a top predator onto the QTP. Importantly, molecular mechanisms underpinning highland adaptation involve relatively few genes, but are nonetheless more complex than previously thought and involve fine‐tuned transcriptional responses and genomic adaptation

    Comparison of osteogenic capability of 3D-printed bioceramic scaffolds and granules with different porosities for clinical translation

    Get PDF
    Pore parameters, structural stability, and filler morphology of artificial implants are key factors influencing the process of bone tissue repair. However, the extent to which each of these factors contributes to bone formation in the preparation of porous bioceramics is currently unclear, with the two often being coupled. Herein, we prepared magnesium-doped wollastonite (Mg-CSi) scaffolds with 57% and 70% porosity (57-S and 70-S) via a 3D printing technique. Meanwhile, the bioceramic granules (57-G and 70-G) with curved pore topography (IWP) were prepared by physically disrupting the 57-S and 70-S scaffolds, respectively, and compared for in vivo osteogenesis at 4, 10, and 16 weeks. The pore parameters and the mechanical and biodegradable properties of different porous bioceramics were characterized systematically. The four groups of porous scaffolds and granules were then implanted into a rabbit femoral defect model to evaluate the osteogenic behavior in vivo. 2D/3D reconstruction and histological analysis showed that significant bone tissue production was visible in the central zone of porous granule groups at the early stage but bone tissue ingrowth was slower in the porous scaffold groups. The bone tissue regeneration and reconstruction capacity were stronger after 10 weeks, and the porous architecture of the 57-S scaffold was maintained stably at 16 weeks. These experimental results demonstrated that the structure-collapsed porous bioceramic is favorable for early-stage osteoconduction and that the 3D topological scaffolds may provide more structural stability for bone tissue growth for a long-term stage. These findings provide new ideas for the selection of different types of porous bioceramics for clinical bone repair

    Electrochemical Behavior of Vinyl Ethylene Sulfite as an Electrolyte Film-forming Additive in Lithium Ion Batteries

    Get PDF
    A film-forming additive, vinyl ethylene sulfite (VES) with both vinylene group and sulfite group, affects the electrochemical performance of carbonaceous mesophase spherules (CMS) and LiFePO4 electrode. The results indicated that a small amount of VES (5%) could be reduced prior to the propylene carbonate (PC) solvent on the surface of CMS electrode in PC-based electrolyte to form a stable solid electrolyte interphase (SEI) layer, so co-intercalation of PC and solvated lithium ions to graphite could be suppressed. Furthermore, the electrolyte of 1 mol/L LiClO4/PC+5%VES (V:V) exhibited excellent electrochemical stability in the LiFePO4 electrode

    Electron tunneling based SEI formation model

    Get PDF
    A new model, describing the capacity loss of C 6 /LiFePO 4 batteries under open-circuit storage conditions has been developed. Degradation is attributed to the formation of a Solid Electrolyte Interface (SEI) at the surface of the graphite particles in the negative electrode. The model takes into account that the Solid Electrolyte Interface consists of an inner and outer SEI layer. The rate determining step of the SEI formation process is proposed to be electron tunneling through the inner SEI layer. The simulation results demonstrate that the capacity loss is dependent on the Stateof-Charge (SoC), the electrode potential and storage time. The inner SEI layer was found to grow much slower than the outer SEI layer

    Electron tunneling based SEI formation model

    Get PDF
    A new model, describing the capacity loss of C 6 /LiFePO 4 batteries under open-circuit storage conditions has been developed. Degradation is attributed to the formation of a Solid Electrolyte Interface (SEI) at the surface of the graphite particles in the negative electrode. The model takes into account that the Solid Electrolyte Interface consists of an inner and outer SEI layer. The rate determining step of the SEI formation process is proposed to be electron tunneling through the inner SEI layer. The simulation results demonstrate that the capacity loss is dependent on the Stateof-Charge (SoC), the electrode potential and storage time. The inner SEI layer was found to grow much slower than the outer SEI layer

    Genomic analysis of the domestication and post-Spanish conquest evolution of the llama and alpaca

    Get PDF
    Background Despite their regional economic importance and being increasingly reared globally, the origins and evolution of the llama and alpaca remain poorly understood. Here we report reference genomes for the llama, and for the guanaco and vicuña (their putative wild progenitors), compare these with the published alpaca genome, and resequence seven individuals of all four species to better understand domestication and introgression between the llama and alpaca. Results Phylogenomic analysis confirms that the llama was domesticated from the guanaco and the alpaca from the vicuña. Introgression was much higher in the alpaca genome (36%) than the llama (5%) and could be dated close to the time of the Spanish conquest, approximately 500 years ago. Introgression patterns are at their most variable on the X-chromosome of the alpaca, featuring 53 genes known to have deleterious X-linked phenotypes in humans. Strong genome-wide introgression signatures include olfactory receptor complexes into both species, hypertension resistance into alpaca, and fleece/fiber traits into llama. Genomic signatures of domestication in the llama include male reproductive traits, while in alpaca feature fleece characteristics, olfaction-related and hypoxia adaptation traits. Expression analysis of the introgressed region that is syntenic to human HSA4q21, a gene cluster previously associated with hypertension in humans under hypoxic conditions, shows a previously undocumented role for PRDM8 downregulation as a potential transcriptional regulation mechanism, analogous to that previously reported at high altitude for hypoxia-inducible factor 1α. Conclusions The unprecedented introgression signatures within both domestic camelid genomes may reflect post-conquest changes in agriculture and the breakdown of traditional management practices

    Automated vulnerability discovery and exploitation in the internet of things

    Get PDF
    Recently, automated software vulnerability detection and exploitation in Internet of Things (IoT) has attracted more and more attention, due to IoT’s fast adoption and high social impact. However, the task is challenging and the solutions are non-trivial: the existing methods have limited effectiveness at discovering vulnerabilities capable of compromising IoT systems. To address this, we propose an Automated Vulnerability Discovery and Exploitation framework with a Scheduling strategy, AutoDES that aims to improve the efficiency and effectiveness of vulnerability discovery and exploitation. In the vulnerability discovery stage, we use our Anti-Driller technique to mitigate the “path explosion” problem. This approach first generates a specific input proceeding from symbolic execution based on a Control Flow Graph (CFG). It then leverages a mutation-based fuzzer to find vulnerabilities while avoiding invalid mutations. In the vulnerability exploitation stage, we analyze the characteristics of vulnerabilities and then propose to generate exploits, via the use of several proposed attack techniques that can produce a shell based on the detected vulnerabilities. We also propose a genetic algorithm (GA)-based scheduling strategy (AutoS) that helps with assigning the computing resources dynamically and efficiently. The extensive experimental results on the RHG 2018 challenge dataset and the BCTF-RHG 2019 challenge dataset clearly demonstrate the effectiveness and efficiency of the proposed framework
    corecore