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Pore parameters, structural stability, and filler morphology of artificial implants are
key factors influencing the process of bone tissue repair. However, the extent to
which each of these factors contributes to bone formation in the preparation of
porous bioceramics is currently unclear, with the two often being coupled. Herein,
we prepared magnesium-doped wollastonite (Mg-CSi) scaffolds with 57% and
70% porosity (57-S and 70-S) via a 3D printing technique. Meanwhile, the
bioceramic granules (57-G and 70-G) with curved pore topography (IWP) were
prepared by physically disrupting the 57-S and 70-S scaffolds, respectively, and
compared for in vivo osteogenesis at 4, 10, and 16 weeks. The pore parameters
and themechanical and biodegradable properties of different porous bioceramics
were characterized systematically. The four groups of porous scaffolds and
granules were then implanted into a rabbit femoral defect model to evaluate
the osteogenic behavior in vivo. 2D/3D reconstruction and histological analysis
showed that significant bone tissue production was visible in the central zone of
porous granule groups at the early stage but bone tissue ingrowth was slower in
the porous scaffold groups. The bone tissue regeneration and reconstruction
capacity were stronger after 10 weeks, and the porous architecture of the 57-S
scaffold was maintained stably at 16 weeks. These experimental results
demonstrated that the structure-collapsed porous bioceramic is favorable for
early-stage osteoconduction and that the 3D topological scaffolds may provide
more structural stability for bone tissue growth for a long-term stage. These
findings provide new ideas for the selection of different types of porous
bioceramics for clinical bone repair.
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1 Introduction

Bone, as one of the regenerable tissues in living bodies, involves a
series of complex regulatory processes for its development, thus
optimizing bone defect repair and functional recovery (Salhotra et al.,
2020). Some trauma and disease can cause a certain degree of very large
bone defects for the body to make a complete recovery through the self-
generated repair mechanisms of bone tissue (Dimitriou et al., 2011; El-
Rashidy et al., 2017). Porous implants are expected to treat bone defects
by guiding bone tissue ingrowth by providing a building block for cell
attachment, proliferation, and maturing into tissue constructs (El-
Rashidy et al., 2017; Vijayavenkataraman et al., 2018). Among these,
bioceramics have excellent biological performances and structural
stability that are compatible with the bone regeneration process and
are a promising option for promoting bone repair (Derby, 2012; Shao
et al., 2017; Kim et al., 2020; Zhang et al., 2020).

Among a wide range of bioceramics, Ca silicate biomaterials are
promising for clinical orthopedics, dental, and craniofacial repair
because of their appreciable biocompatibility and osteostimulative
properties (Prati and Gandolfi, 2015; Wang et al., 2019; Xu et al.,
2022). As for the wollastonite (CaSiO3; CSi) ceramic, foreign ion
doping into CSi is an effective approach for improving its
biodegradation rate and mechanical strength. Our previous
studies have demonstrated that when an appropriate amount of
Mg atoms occupies the position of Ca atoms in the CSi lattice, the
crystal structure of CSi becomes more stable and the Mg ions
released can promote the repair of bone tissue, so Mg-doped CSi
ceramics (CSi-Mg) could enhance the structural stability and further
improve the osteogenic capability (Xie et al., 2016; Ke et al., 2017;
Sun et al., 2021; Lin et al., 2022).

The triply periodic minimal surface (TPMS) is an extremely
small surface with 3D periodicity. It varies periodically in the triaxial
direction, has a smooth surface is completely connected inside the
model, and is an excellent porous structure with the advantages of
minimum energy and structural stability (Kapfer et al., 2011). The
mathematical expressions and construction methods of TPMS have
been widely studied, and the properties, such as the shape and
stiffness of the structure, can be adjusted by changing the parameters
(Hu et al., 2022). Nowadays, TPMS structures have attracted
increasing attention because they exhibit highly symmetrical and
complex topologies via a computer-assisted design and can be
reconstructed by a 3D printing technique (Mustafa et al., 2021;
Hu et al., 2022). Based on the high-precision bioceramic
stereolithography, the personalized TMPS pore scaffolds have
been used to understand the potential bone tissue ingrowth
behavior (Kim et al., 2020; Zhang et al., 2020; Lv et al., 2022).
Compared to the strut-based porous scaffolds, the TPMS-pore
scaffolds have some advantages in studying the angiogenic
efficiency and the induction of osteogenic differentiation (Lu
et al., 2021; Zhang Q. et al., 2022; Li et al., 2023). It is reported
that the high curvature in TPMS pore networks may induce
cytoskeleton reorganization, leading to osteogenic and vascular
coupling, and accelerated bone regeneration (Yang et al., 2022).
Our previous study has found that the curved pore (skeletal IWP)
scaffolds exhibit significant flexural strength (≥20 MPa) and that
such scaffolds exhibit mild biodegradation and slow loss of
mechanical properties in vitro (Lu et al., 2021). Hence, it is
reasonable to assume that the structural optimization of TPMS

pore scaffolds may help understand the bone repair capability for
developing implants that match the requirement of critical-sized
bone defect repair.

On the other hand, it is well agreed that the optimal implant is to
be fabricated as personalized morphology, which may match the
bone defect cavity. In general, the conventional large-sized implants
lead to another outcome that over-large soft tissue damage is the
precondition for the implanting process. In contrast, the granule-
type implant is more convenient to fill completely with bone defects.
The size and geometry of bone-filling materials are deemed to play a
crucial role during bone tissue healing. Indeed, the implant size and
porosity could influence the osteoconductive properties and
degradation kinetics of the biomaterials (Karageorgiou and
Kaplan, 2005; CHOI et al., 2014; Cui et al., 2018; Zhang Y. et al.,
2022). Porosity is defined as the percentage of the void space in the
solid out of the total volume (León Y León, 1998). Pore parameters
and implant morphology can influence bone tissue ingrowth
through the modulation of cell behavior and the influence of
early angiogenesis (Taniguchi et al., 2016; Bharadwaz and
Jayasuriya, 2020; Wu et al., 2022). It is known that bone mineral
is an interconnective porous composite including dense and
cancellous bone mineral networks, with a dense bone porosity of
~3.5% and a cancellous bone porosity of 30–95% (Keaveny et al.,
2001; Karageorgiou and Kaplan, 2005; Renders et al., 2007). Highly
porous implants may significantly improve the osteogenic capability
(Wieding et al., 2015), whereas the structural and morphological
properties of porous implants may be reduced due to the increased
porosity and dimension of the material (Taniguchi et al., 2016).
Accordingly, the porous biomaterials should be designed for surgical
convenience and structural stability for the bone repair process.

So far and to the best of our knowledge, there are few studies that
focused on the comparison investigation of biomaterial degradation
and the osteogenic capability involving porous scaffolds and
granules composed of the same chemical compositions.
Therefore, the present study aims to evaluate and compare the
physicochemical and biological performances of the CSi-Mg5
porous scaffolds and granules in vitro and in vivo. The two
groups of CSi-Mg bioceramic scaffolds with 57% and 70%
porosity, respectively, and with IWP cell topology were fabricated
by 3D printing technology (Figure 1). The structural parameters of
the cylindrical porous scaffolds (~6.0 mm) and crushed porous
granules (~2 mm) were compared by micro-CT and scanning
electron microscopy. The bio-dissolution in vitro and osteogenic
capability of the scaffolds and granules were evaluated with time in
Tris buffer and the rabbit femoral bone defect in vivo. The
experimental results indicated that both scaffold porosity and
morphology significantly affect the new bone regeneration
efficiency at the early and late stages, respectively. This will
provide clinical guidance for different bone defect conditions and
translational biomaterial product design.

2 Materials and methods

2.1 Chemicals and materials

The reagent-grade inorganic salts (analytic reagent) including
calcium nitrate (Ca(NO3)2·4H2O), magnesium nitrate
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(Mg(NO3)2·6H2O), sodium silicate (Na2SiO3·9H2O), and
trishydroxymethylaminomethane (Tris) were purchased from
Shanghai Sinopharm Reagent Co., Ltd. and used directly without
further purification. The photo-sensitive resin (containing curable
monomers or oligomers, photo-initiator, and dispersant) was
supplied by TenDimensions Technology Co., Ltd., China. Tris
was used to prepare 0.05 M Tris buffer (pH ~7.40).

2.2 Preparation of CSi-Mg5 bioceramic
powders

The CSi-Mg5 powders were synthesized by the chemical co-
precipitation method, as reported previously (Xie et al., 2016).
Briefly, a mixture of the calcium nitrate (0.50 mol/L;
Ca(NO3)2·4H2O) and magnesium nitrate solutions (0.50 mol/L;
Mg(NO3)2·6H2O) was added dropwise to the sodium silicate
solution (0.50 mol/L; Na2SiO3·9H2O) (the molar ratio Ca:Mg:Si =
95:5:100) under the magnetic stirring condition of pH ~10. After the
end of titration, purified water and absolute ethanol were used to
wash alternately three times after 12 h of aging. Then, the resulting
white precipitate was heated in a 60°C oven for 48 h to fully dry, and
the dried powder was calcined at 850°C for 2 h with natural cooling.
Finally, the calcined powders were ground in an ethanol medium
with a rotation speed of a planetary ball mill (Chisun Technology
Co., China) at 300 rpm for 6 h. The powder was dried overnight at
60°C. X-ray diffractometry (XRD; RIGAKU D/max RA) using CuK-
α radiation was observed at 40 kV/40 ma. Data were collected
between 10° and 60° in steps of 0.02°/2θ to identify the
crystallization of powder. The contents of Ca, Mg, and Si in the
powders were measured by inductively coupled plasma optical
emission spectrometry (ICP-OES: 710-es, Varian, United States).

2.3 3D model design for printing porous
scaffolds

Based on our previous studies, two IWP-type structural cells
with different porosities (57% and 70%) were first designed using
MathMod (Li et al., 2021) (Figure 1). The average pore size of the
unit cell in 3D space was then calculated using Avizo software, and
their average pore size wasmaintained by adjusting their dimensions
to ~550 μm. The designed structural cells were then repaired in
detail using Materialise Magics 21.0 software. The designed
structural cells and, finally, the two types of cylindrical scaffolds
were designed using the periodic 3D filling function of the software
application for subsequent experimental studies. The Ø 10 × 10-mm
cylindrical scaffold model was designed for the subsequent
preparation of porous bioceramic granules, while the Ø 6 × 6-
mm cylindrical scaffold model was designed for the in vitro
determination of biodegradability, mechanical properties, and in
vivo osteogenic properties, and subsequent implantation in animal
experiments.

2.4 3D printing of porous ceramic scaffolds
and granules

Based on our previous experiments, the volume loading of the
CSi-Mg5 powder is about 60% (Lu et al., 2021). The slurry for 3D
printing was prepared by mixing 60wt% CSi-Mg5 powder and 40wt
% photosensitive resin, and then stirring for 30 min using a high-
speed mixer to ensure the two were well mixed (Li et al., 2019). A
stereolithography machine (TenDimensions Technology Co.,
China) with a wavelength of 405 nm was used for photocurable
printing of the bioceramic scaffolds. The powder resin paste is

FIGURE 1
Schematic representation of the process of manufacturing bioceramic scaffolds and bioceramic granules using 3D printing technology.
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poured into the printing tank, and the squeegee pushes out a thin
layer of paste on the glass plate. Then, the appropriate exposure
parameters were selected, and UV light was irradiated from below
the glass plate to form a cured layer of ~100 μm thickness per layer
on the forming table. After printing was completed, the printed
samples were placed in deionized water for more than 10 min to
ultrasonically remove the residual paste on the surface of the
scaffolds, and then placed in a 60°C oven for a period of
thorough drying. Finally, the scaffolds were placed in a muffle
furnace, heated to 400°C at a rate of 1°C/min, and held for 1 h to
ensure complete volatilization of the resin in the scaffolds, and then
heated to 1,150°C at a rate of 2°C/min, held for 2 h after the holding
period, and naturally cooled to obtain the bioceramic scaffolds. The
porous bioceramic scaffolds were crushed into porous granules
using a pressure testing machine and sieved through 20-mesh
and 10-mesh molecular sieves, to obtain porous ceramic granules
with an equivalent volume granule size ranging from 0.85 to
2.00 mm.

2.5 Primary morphology and structure
analysis

The morphology and pore structure of the porous scaffold and
granules were observed using a mobile camera (Nova 6, Huawei).
The samples were coated with a thin layer of gold, and the surface
and fracture microstructures of the bioceramic scaffolds were
examined by scanning electron microscopy (SEM; JEM-6700F;
Japan). Linear shrinkage of cylindrical scaffolds before and after
sintering was determined using a digital caliper. The ideal model
volume was analyzed using Magics 21.0 software to obtain the ideal
model volume, and the cylindrical volume was excluded from the
model volume to obtain the ideal void volume, and both calculations
gave the ideal model porosity.

2.6 2D/3D microstructure analysis

Microcomputed tomography (vivaCT 100, Scanco Medical,
Switzerland) was used to scan sintered scaffolds (n = 3) and
pellet scaffolds filled in cylindrical rigid polyvinyl chloride (PVC-
U) molds (Ø 10 × 6 mm) at a resolution of 14 μm and an exposure
time of 3,000 ms to analyze void percentages and volumes. The 2D/
3D pore structure was reconstructed using auxiliary software
(Volume Graphics MAX, Volume Graphics, Germany), and the
software application (Volume Graphics MAX 3.0.2) was used to
calculate quantitative data on pore parameters including mean pore
size, porosity, and surface area.

2.7 Biological degradation in vitro evaluation

Samples were taken from each group for weighing and recording
the initial weight (m0; n = 6), and the scaffolds and granules were
immersed in Tris buffer (pH ~7.40) at a solid–liquid ratio of 1.0 g/
50 mL at 37°C. At six time points on days 1, 3, 7, 14, 21, and 28 after
immersion, 1 mL of the supernatant was aspirated and
supplemented with an equal volume of fresh Tris buffer, and the

supernatant was diluted 10 times with deionized water for ICP-OES
(Thermo, United States) analysis. The samples were removed after 1,
2, 3, and 4 weeks of immersion, washed with anhydrous ethanol, and
then dried at 60°C for 12 h. The weight (m1) of each group of
samples after immersion was weighed and the weight loss was
calculated using the following formula: mass loss = m1/m0 × 100%.

2.8 In vitro surface remineralization
experiments

First, the porous scaffold samples were immersed in
simulated body fluid (SBF) at the ratio of the scaffold surface
area/volume of solution of 0.1 cm³/mL. The inorganic ion
concentrations were similar to those of human plasma (Na+,
142 mM; K+, 5 mM; Ca2+, 2.5 mM; Mg2+, 1.5 mM; SO4

2−, 1 mM;
HPO4

2−, 1 mM; Cl−, 36 mM; and HCO3
−, 14 mM), and the

containers were sealed and placed in a 37°C thermostat. After
7 days of immersion, the samples were dehydrated and dried, and
then gold-sprayed for the apatite production observation by
SEM. The elements on the surface layer of the samples were
qualitatively analyzed by energy dispersive X-ray (EDX) to
calculate the Ca/P ratio.

2.9 Scaffold implantation and specimen
collection

All animal experiments were conducted and handled
according to the standards of the Ethics Committee of
Zhejiang University. The New Zealand white rabbits (~3.0 kg)
were divided into three groups of 10 rabbits each, and the
bioceramic scaffold and granule samples (57-S, 70-S, 57-G,
and 70-G) were equally implanted into each group of rabbit
footpad models by cross-matching. All New Zealand white
rabbits were acclimatized for more than 1 week prior to
surgery under steel cage feeding conditions, and food boxes
were removed 8 h before surgery. Rabbits were anesthetized
with fresh 3% sodium pentobarbital (Merck, Germany) at a
dose of approximately 1.0 mL/kg by intravenous injection at
the ear margin. After completion of anesthesia, the surgical
area of the lateral condyle of the distal femur was shaved and
disinfected. A longitudinal skin incision of approximately 3 cm
was made in the plane of the lateral femoral condyle, and the
fascia was separated layer by layer to reach the bone surface; then,
a Ø6 × 6-mm defect was created perpendicular to the bone
surface with a dental ring drill, and the autoclaved bioceramic
scaffolds and granules were filled into the constructive defect.
The wound was then closed layer by layer, and an appropriate
amount of penicillin powder was spread before closing the wound
to prevent bacterial infection. Postoperatively, the rabbits were
left free in the cage, and veterinary penicillin (800,000 units) was
administered intramuscularly daily on days 1, 2, and 3, while the
postoperative incision was observed for changes. The rabbits
were euthanized by injection of an overdose of sodium
pentobarbital after 4, 10, and 16 weeks post-implantation, and
femoral specimens were collected and placed in test tubes filled
with 4% paraformaldehyde fixative for storage.
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2.10 μCT scanning analysis

Quantitative analysis of the microstructure of animal samples
was performed by microelectronic computed tomography (μCT;
Inveon, Siemens, Germany). First, the specimens were scanned
along the longitudinal axis with a slice thickness of 15 μm at
90 kV and 56 mA current. The data obtained after scanning were
passed through Inveon Acquisition Workplace (IAW, Siemens,
Germany) software to reconstruct 3D images of the region of
interest (ROI, Ø 6.0 × 6.0 mm) containing the repair area. The
osteogenic indices BV/TV (ratio of bone volume to the total defect
volume), RV/TV (ratio of residual material volume to the total
defect volume), and Tb·N (number of bone trabeculae) were
quantified for the bone defects of the ROI.

2.11 Histological and histomorphometric
analyses

After radiological examination, the groups of specimens were
subjected to histological analysis. The specimens examined were
thoroughly cleaned, and then dehydrated and prepared as hard
tissue sections by embedding the specimens in polymethyl
methacrylate (PMMA). The embedded implant was sliced in a
direction perpendicular to the long axis of the femur to a
thickness of approximately 100 μm using a slicer (SP1600; Leica).
The sections were then slowly ground with a micro-grinder (Exakt-
Micro-Grinding System, Leica, Germany) to a thickness of
approximately 40–50 μm and polished on a Macintosh machine.
The sections were then polished and finally stained with MacNeal
andMasson stains, and analyzed by light microscopy (DMLA, Leica;
Germany) at different magnifications (×40, ×200). For
histomorphometric analysis, ×100 magnification images of the
sections were selected and analyzed using Image-Pro Plus 6.0
(Media Cybernetic, United States) image analysis software. The
area of the newly formed bone (BS) and the total area (TS) were
measured quantitatively, and then, BS/TS was calculated from the
acquired data (n = 4).

2.12 SEM/EDS characterization

The sections were sprayed with gold and analyzed by field
emission SEM (FE-SEM; Hitachi, Tokyo, Japan) and energy
dispersive X-ray spectrometry (EDS; Apollo X; EDAX, Inc.,
Mahwah, United States) at an accelerating voltage of 15 kV. The
Ca/P atomic ratio was determined, and four regions were randomly
selected for analysis.

2.13 Statistical analysis

SPSS 21.0 (IBM, United States) was used as the statistical
software application for this experiment, with all quantitative
data expressed as the mean ± standard deviation. Differences
between experimental data were examined by one-way analysis of
variance (ANOVA). Differences in results were considered
statistically significant when p < 0.05.

3 Results

3.1 Printing technique for the porous
scaffolds

The bioceramic frameworks were printed as shown in Figure 1.
Quantitative measurements of the bioceramic scaffold size were
made on cylindrical samples before and after the sintering treatment
(Table 1). The sintering process resulted in linear shrinkage of
porous bioceramics, accompanied by higher shrinkage in the X–Y
axis (~24.49 ± 0.1% and ~25.35 ± 0.1%) than in the Z-axis (~25.59 ±
1.3% and ~23.75 ± 1.2%). The high-porosity 70-S samples showed
slightly higher shrinkage than the 57-S samples. However, the 57-S
samples had a larger specific surface area (4.85 ± 0.1 m2/kg) than the
70-S samples (4.30 ± 0.1 m2/kg).

3.2 Preliminary characterization of porous
bioceramics

According to the XRD analysis for the CSi-Mg5 powder, the
diffraction peaks were identified as the wollastonite 2M phase
(PDF#43-1460), indicating that Mg doping leads to no phase
change in wollastonite (Supplementary Figure S1). Meanwhile,
the ICP analysis also indicated that Mg replacing Ca was
approximately 4.77%, which is close to the designed value of 5%.

Figure 2A shows the outward appearance of bioceramic scaffolds
with a precisely defined pore geometry after sintering, and the
porous granules derived from the structural collapse of the
scaffolds were also observed using a digital camera. The
cylindrical scaffold and designed pore architectures were
maintained well after sintering, except for some shrinkage. In
particular, the fully interconnected macropores within the
scaffold can be seen from the side-view observation. Figure 2B
shows the mechanical behavior of the bioceramic scaffolds (57-S and
70-S) with different porosities under the compression condition. In
total, the average compressive strength of 57-S was 21.7 MPa, while
that of 70-S was 11.5 MPa, which is nearly half of the former. In
comparison, the 57-S scaffold has a higher Young’s modulus value
(~817.06 N/m2), indicating greater resistance to deformation. These
scaffolds showed an initial approximately linear increase in stress at
strains less than 0.15%. When strain reaches 0.154%, the stresses in
the high-porosity scaffold reach a high front and brittle separation
occurs earlier. In total, two groups of scaffolds showed similar
deformation tendencies in the compressive strain (~0.154% and
~0.173%).

Meanwhile, the complete porous structures could be
reconstructed by μCT, and the 2D/3D pore network and pore
morphology were confirmed (Figure 2C). From the cross-
sectional view, the 70-S scaffolds showed more interconnected
pores than the 57-S samples, and the former has thinner pore
wall thickness than the latter, implying that such a 3D printing
technique may readily fabricate the high-precision porous
constructs with different porosity via adjusting the pore wall
dimension. In contrast, the porous granules showed irregular
morphology and different sizes, and meanwhile, such granules
could hardly achieve the closely packed filling in the defect,
although the granule-packed implants have fully interconnective
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TABLE 1 Structural parameters for the bioceramic scaffolds (Ø 6 × 6 mm) with a porosity of 57% and 70%.

Sample Diameter (mm) Height (mm) Specific surface area (m2/kg) X–Y shrinkage (%) Z-shrinkage (%)

57-S 5.89 ± 0.01 5.96 ± 0.1 4.85 ± 0.1 24.49 ± 0.1 23.59 ± 1.3

70-S 5.82 ± 0.01 5.95 ± 0.1 4.30 ± 0.1 25.35 ± 0.1 23.72 ± 1.2

FIGURE 2
(A) Top and side views of 57-S and 70-S bioceramic scaffolds after sintering and appearance of 57-G and 70-G bioceramic granules after sieving the
crushed scaffolds; (B) stress–strain curves and initial compressive strength and Young’s modulus for 57-S (red) and 70-S (blue),**p < 0.01. (C) 57-S and
70-S bioceramic scaffolds, 57-G and 70-G bioceramic granules filled into Ø 6 × 6-mm molds, by CT scan 3D views, and axial and coronal views; (D)
average pore size and average porosity analysis; (E) SEMmicrographs of bioceramic scaffolds and granules 50 × (a1, a2, a3, and a4), 500 × (b1, b2, b3,
and b4), and after in vitro mineralization 1,500 × (c1, c2, c3, and c4).
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pore architectures. Moreover, the filling density of 57-G groups was
higher than that of 70-G, possibly attributed to the lower porosity of
the former. The axial and coronal views of the CT images clearly
showed the difference in the filling behavior of the scaffold and
granules. The 57-S and 70-S scaffolds were highly dense filling in
comparison with 57-G and 70-G, with smaller intergaps and less
porosity. From the (specific) surface areas of the scaffold and
granules by measured μCT, the granules showed higher surface
areas than those of the scaffolds, and the 57-G and the 70-G granules
had more appreciable surface areas of 15.31 ± 0.88 and 14.15 ±
0.15 cm2, respectively.

It was mentioned that the 57-G and 70-G groups showed
significantly different porosities (51.72% ± 1.73% vs. 68.5% ±
0.94%; Figure 2D). A similar difference occurred between the 57-
S and 70-S groups (54.04% ± 0.95% vs. 63.70% ± 1.7%; p < 0.01). It
was worth mentioning that, in total, the 70-G granules had the
highest among the four groups of porous bioceramic fillers.
Figure 2D shows the pore dimensions of each group measured
by CT images. The pore sizes of 57-G and 70-G were 316.21 ±
28.09 and 505.80 ± 27.85 μm, respectively. The mean pore diameters
of 57-S and 70-S were 458.53 ± 8.63 and 464.20 ± 10.134 μm,
respectively, which were slightly smaller than the theoretical pore
size based on the CAD model design.

The pore geometry of bioceramic scaffolds and granules was
observed by SEM (Figure 2E). As expected, the regular macropores
were retained well after sintering. Moreover, the immersed scaffolds
in SBF for 14 days showed a new apatite-like remineralization layer.
It can be found that a dense new surface layer was formed onto the
pore wall. The quantitative EDS analysis showed that both Ca and P
peaks occurred on the surface layer, with surface Ca/P ratios ranging
from 1.38 to 1.66. The bioceramic granules could also induce the
new apatite-like depositing mineral.

3.3 Assessment of bio-dissolution and ion
release in vitro

The bioceramic scaffolds and granules were used to evaluate the
in vitro biodissolution behavior (Figure 3A). As shown in Figures
3A, B, fast mechanical decay of the scaffolds occurred during the
initial 2 weeks of immersion, accompanied by 45% and 18% in decay
for the 57-S and 70-S scaffolds, respectively. Indeed, the scaffolds
still had appreciable compression resistance (~11.5 and ~9.4 MPa).
Then, the scaffolds maintained a slower decrease in compressive
strength (6–7 MPa) after 4 weeks. All bioceramic porous samples
exhibited mass decay in Tris buffer (Figure 3C). During the
immersion process, the granular bioceramics showed significantly
faster biodissolution in comparison with the porous scaffolds. The
scaffolds had a mass loss of only ~4% after 4 weeks of immersion but
that of the granules lost nearly 15% (Figure 3C). It is interesting that
the low-porosity samples showed higher mass loss than the high-
porosity counterpart, although there was no significant difference
(p < 0.05).

Figures 3D–F show the changes in Ca, Si, and Mg
concentrations of the porous scaffolds and granules in Tris
buffer. All samples degraded rapidly within the initial 7 days of
immersion, showing a rapid increase in ionic concentrations. In
particular, Ca and Mg concentrations showed a steady increase at
the end of the immersion test (28 days), while the silicon
concentration remained very stable with the prolongation of
immersion time after 7 days. It is worth noting that, on the other
hand, the porous granules exhibited a higher biodegradation rate
than the scaffolds before the structural collapse, possibly due to the
higher appreciable specific surface area in the aqueous medium.
Obviously, faster ion release implies faster material biodissolution
and mass decay, as shown in Figure 3C.

FIGURE 3
Degradation, mechanical loss, and ion release experiments were performed in Tris buffer (pH = 7.4.37°C). (A) Schematic diagram of bioceramic
scaffolds and granules immersed in buffer; (B) variation in weight (%) of bioceramic scaffolds and pellets vs. immersion time; (C) variation in stress
resistance of bioceramic scaffolds vs. immersion time; and (D–F) variation in ion concentration vs. immersion time.
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3.4 Evaluation of bone regeneration in vivo

3.4.1 In vivo macroscopic evaluation
Implantation protocols with porous scaffolds and granules were

designed to systematically investigate their effect on bone
regeneration efficiency in vivo. The rabbit femoral condyle model
with defective material implantation is shown in Figure 4A. The
implantation procedure is shown in Figure 4B. The rabbits showed
no signs of infection after the procedure, moved well, and survived
long enough to be harvested. The general view of the femoral
condyle specimens is shown in Figure 4C. The area of repair at
the defect site became progressively larger over time, and no necrosis
was observed in any of the specimens. The porous granules were
significantly more effective than the porous scaffolds, according to
the significant difference between 70-G and 57-S implants. At
16 weeks, the repair tissue could completely cover the defect surface.

Radiographic examination showed that the porous scaffolds and
granules showed variable biological progression from 4 to 16 weeks
postoperatively (Figure 4D). The more expected bone repair was
observed from the 57-G and 70-G groups. In contrast, the bone
defects filled with 57-S were less well repaired at 4 and 10 weeks. At
10 weeks, the 57-S and 70-S scaffolds were easily distinguished from
the host bone tissue. In contrast, 57-G and 70-G groups exhibited
more rapid in vivo biodegradation from 4 to 16 weeks. Interestingly,
at 16 weeks, radiographs of the 70-S, 57-G, and 70-G groups showed
almost no discernible difference in implanted materials, which
implies that the higher porosity of the scaffold and, especially,
the granule fillers may contribute to the biodegradation of CSi-
Mg5 bioceramics.

3.4.2 μCT in vivo examination
Figures 5A–C show the 2D/3D μCT images of femoral condylar

defects at 4–16 weeks postoperatively. All implants showed a porous
structure as observed from the similar reconstruction in coronal and
sagittal images (the internal pore walls of all implants were rendered

as blue by the software application). The 2D μCT examination
showed the infiltration of new bone tissue into the granule-filled
bone defects at 4 weeks (Figure 5A). Interestingly, the granule-filling
groups (57-G and 70-G) showed more appreciable new bone tissue
ingrowth than the scaffold groups. The internal gaps between the 57-
G granules were all filled with new bone tissue and completely
bridged. However, the new bone tissue infiltration was only in the
peripheral regions of the bioceramic scaffolds within the initial
4 weeks.

With the prolongation of implantation time up to 10 weeks,
significant new bone tissue invasion into the macropore
architectures in the 57-S and 70-S scaffolds and new bone tissue
had arrived at the internal pores of the scaffolds (Figure 5B). At this
time point, there was more osteogenesis in the 57-S group than in
the high-porosity 70-S group. Notably, in the 57-G granule group
with a large amount of internal bone tissue production, the material
residual was significantly reduced.

At a later stage (16 weeks), the 57-S and 70-S groups had a large
area of newly formed bone tissue, accompanying a continuous new
bone mineral network in the bone defect, similar to the situation
observed from the 57-G and 70-G groups (Figure 5C). It was noted
that the scaffolds and granules were nearly biodegraded completely
from 10 to 16 weeks, leaving only a small amount of isolated islands,
but interestingly, the new bone tissue was grown along the
interconnected pore networks in the porous scaffolds, without
the structural collapse.

Quantitative characterizations, including BV/TV, RV/TV, and
Tb.N data, were consistent with the aforementioned observations
(Figures 5D–F), and the differences among the four groups of fillers
depended only on the implant morphology and porosity. At
4–10 weeks, BV/TV data were higher for the granule groups (57-
G and 70-G), reflecting continued bone tissue ingrowth. This also
reflected the higher Tb.N data and higher bone repair efficiency.
This suggests that granular materials with irregular and disordered
pore networks may be significantly beneficial for early-stage bone

FIGURE 4
(A) Schematic diagram of bioceramic implantation into the femoral condyle of a New Zealand white rabbit; (B) bioceramic scaffold and granule
implantation procedure; (C) bone specimens at 4, 10, and 16 weeks; and (D) X-ray images of femoral defects filled with bioceramic scaffolds and granules
at 4, 10, and 16 weeks after implantation.
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tissue regeneration. Interestingly, however, the BV/TV data showed
a significant decrease in the 57-G and 70-G groups at 10–16 weeks,
suggesting the new bone tissue began remodeling during this stage.
Obviously, the 57-S and 70-S groups showed a significant increase in
the BV/TV data from 10 to 16 weeks, with the scaffold group
overtaking the granules group at 16 weeks. Meanwhile, the BV/
TV data on the 57-S group outperformed those of the 70-S group,
suggesting that the stable pore structure of bioceramic scaffolds with
apricate porosity also favors osteoconduction in the long term. On
the other hand, during bone tissue maturation and remodeling, a
transient decrease in the new bone tissue was quantified in femoral
condylar defects. From 4 to 10 weeks, the RV/TV data decreased
more rapidly in the porous granule group compared to the scaffold
group, and the former biodegraded more rapidly, especially the 70-S
scaffold degraded faster than the 57-S scaffold. It was worth noting
that at 16 weeks, there was no significant difference in the RV/TV
data and the measurements showed almost universal biodegradation
in all groups.

3.4.3 Histological evaluation of femoral bone
specimens

The PMMA-embedded bone specimens were then sectioned at
100 μm, and the implanted material within the circular bone defect

and the surrounding neonatal tissue was examined by light
microscopy. MacNeal staining was then performed with reagents,
and the tissue sections were examined by high-magnification
microscopy (40, 100×). As shown in Figure 6, the bioceramic
scaffolds and granules are gray, and the new bone tissue and
fibers are pink and pale blue, respectively. The MacNeal-stained
images showed that at 4 weeks, no necrosis or inflammatory reaction
was evident in any group, and the porous network/tissue interface
was observed. The new bone tissue formed mainly around the pore
wall of the bioceramic scaffold and extended into the interconnected
pores. The growth of the new bone tissue into the bone defects varied
according to the different implant morphologies. An interconnected
pore network with different sizes was formed between the 57-G and
70-G groups. As for the scaffold groups, 57-S and 70-S, the ordered
pore networks were undoubtedly facilitated with the growth of new
bone tissue ingrowth, whereas only a small amount of new bone
tissue was produced in the early stages (Figure 6A).

At 10–16 weeks, MacNeal’s staining showed the
histomorphological evolution of the implant/tissue interface
(Figures 6B, C). We observed a large amount of bone tissue
uniformly distributed within the implant connection holes in all
groups (Figure 6B). In both the porous granule and scaffold groups,
both the μCT scan sections and histological specimen observation

FIGURE 5
(A–C) Two- and three-dimensional μCT reconstructions of femoral defects filled with bioceramic scaffolds and granules were performed 4, 10, and
16 weeks after implantation; new bone (yellow); bioceramic (blue); BV/TV (D), RV/TV (E) and Tb.N (F) of the bone defects were quantified according to the
analysis of the three-dimensional μCT reconstructions. *p < 0.05 and **p < 0.01.
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showed that the bone tissue was continuously attached to the pore
wall, especially in the 57-G and 70-G groups at 10 weeks. At that
time point, the new bone tissue invaded inside the gaps and
integrated with the bioceramic granules. However, the scaffold
structure was not significantly deformed, with significant bone
tissue appearing within the pores and a steady increase in the
surrounding bone tissue until 16 weeks. A large area of mature
bone tissue surrounded the scaffold, comparable to the 57-G
group. On the other hand, the 70-S scaffold showed significant
material degradation and structural changes at 16 weeks but no
significant difference from the granule groups.

The quantitative analysis of NB in the scaffold using MacNeal-
stained sections is shown in Figure 6D. At 4 and 10 weeks, the amount
of bone formed in the granule groups was significantly better than that
in the scaffold group (p < 0.01) and 57-G was better than 70-G (p <
0.01). At 16 weeks, the osteogenic volume of 57-S was higher than 70-G
and 70-S (p < 0.01), possibly due to the faster biodegradation of 70-S
(Figure 6E) and the inability to maintain a continuous stable support
structure internally. The 57-G and 70-G granules decreased slightly,
consistent with the μCT-derived data, possibly because the granules
degraded faster throughout the implantation process.

The Masson’s stain images also showed the maturation of the
nascent bone tissue (Figure 7). At 10 weeks, a large network of collagen
fibers (blue) was visible in the 57-S group, while a distinct mature bone
tissue (red) was visible in the 57-G and 70-G groups. After 16 weeks,
most of the collagen fibers have transformed into mature bone tissues.

3.4.4 Evaluation of the chemical composition of
phase transformation

In order to evaluate the transformation process and elemental
distribution of bioceramic implants to apatite-like bone minerals,
SEM/EDS analysis was used to examine the untreated specimen
sections at 4 and 16 weeks (Figure 8). From the SEM and EDS
mapping images, inorganic ions including Ca, Mg, Si, and P were
randomly distrusted using different colors to distinguish. The
bioceramic scaffold was rich in Ca, Mg, and Si, and P-rich in
areas of the new bone tissue. After 16 weeks, the Ca- and Si-rich
areas were further reduced, and P and Mg showed homogeneous
distribution. This can be attributed to the biodegradation and phase
conversion of the Ca-/Si-rich bioceramics into Ca-/P-rich apatite. In
particular, in the 70-S group, the scaffold structures have almost
disappeared and P was evenly distributed. The Ca/P ratios in
bioceramic regions were shown in the P plot.

4 Discussion

Various attempts have been made in bone tissue engineering to
repair bone defects by optimizing the preparation of
osteoconductive biomaterials, among which the design of porous
scaffolds similar to the natural bone mineral network is of great
importance for bone tissue regeneration (Yoshikawa et al., 2009;
Kim et al., 2017). Among these, porous scaffolds and granules have

FIGURE 6
MacNeal-strained photomicrographs (×40, ×100) at 4 weeks (A), 10 weeks (B), and 16 weeks (C) of implanted bioceramic scaffolds and granules.
The percentage of the new bone area (D) and that of the residual material (E)were analyzed for each group at different implantation times by histometry.
NB, newly formed new bone; G, bioceramic granules; S, bioceramic scaffold. *p < 0.05 and **p < 0.01.
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been used in filling various bone defects; however, in clinical
practice, the size and shape of the bone defect cavities often vary
and are irregular. The customized bioceramic scaffolds tend to have
a regular and orderly shape, and easily adapt to large-sized bone
defects, but bioceramic granules can fill random bone defect cavities

to meet a wider range of clinical applications (CHOI et al., 2014;
Dong et al., 2022; Huang et al., 2022; Hayashi et al., 2023).
Unfortunately, the osteoconductive capability of the two types of
implants with similar internal pore architectures has not yet been
designed for comparison. In the present study, the IWP-pore

FIGURE 7
Histological evaluation (Masson staining; ×40, ×100) and the bone regeneration of bioceramic scaffolds and granules at 4,10, and 16 weeks. NB,
newly formed new bone; G, bioceramic granules; S, bioceramic scaffold.

FIGURE 8
SEM images of the bioceramic struts after 4 weeks (A) and 16 weeks (B) of implantation and EDS mapping of Si, Ca, P, and Mg (50×). According to
EDS mapping, the different components overlap on the SEM images. Mineralized tissue (P-rich) formed around a bioceramic pillar (Si-rich).
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bioceramic scaffolds of 57% and 70% in porosity were 3D-printed,
and meanwhile, the sintered scaffolds were compressed to granular
fillers. It is interesting that the porosity and morphology of fillers
with scaffold and granular morphologies could mediate the different
osteogenic capacities in the early stage and during the long-term
repair process.

Numerous studies have emphasized that the pore geometry
provides space for osteogenesis and contributes to bone formation
(Kuboki et al., 1998; Wang et al., 2022). In the fabrication of porous
materials, 3D printing has gained much attention for its high accuracy
and ability to produce complex bionic structures that are not possible
with traditional fabrication methods (Su et al., 2022; Wei et al., 2022).
Compared to conventional structures, various TPMS bionic scaffolds
designed by computer-aided modeling have a high surface-to-volume
ratio, greater stress dispersion, and higher permeability
(Vijayavenkataraman et al., 2018). As for the TPMS pore scaffolds,
it was found that the different shapes, pore sizes, and curvatures of the
TPMS structures resulted in different osteoconductive and angiogenic
capabilities (Li et al., 2021; Li et al., 2023; ZhangQ. et al., 2022;Wu et al.,
2022; Yang et al., 2022). Moreover, the complex topology of the TPMS
carrier has excellent mechanical properties (Lu et al., 2021). The
addition of 3D printing helps gain insights into the influence of the
structural geometric features of the pore network on the mechanical
properties and stability of the TPMS scaffold itself.

The IWP pore scaffold was created from mathematical functions,
with smooth interconnected interiors, zero mean curvature, and similar
characteristics to bone trabeculae (Al-Ketan et al., 2018). The porous
scaffold was produced with permeable internal pores, and the granules
exhibited a porous structure (Figure 2A). Furthermore, the 2D/3D μCT-
reconstructed images showed a well-connected pore network within all
implants (Figure 2C). It was observed that the IWP pore scaffolds with
the same pore size showed similar changes in the stress–strain trend but
significant differences in compressive strength due to different
porosities (Figure 2B). In general, when the TPMS pore scaffolds are
compressed, the center layer pore wall often collapses first, leading to a
stress jump in the stress–strain curves.

Up to now, more and more studies have paid attention to the
relationship between pore size (in the range of 300–900 μm) and
biological performances of porous materials (Vail et al., 1994; Hayashi
et al., 2022). Due to the direct influence of the pore size and angiogenic
efficiency, some researchers have struggled with the optimal pore
dimension for achieving appreciable bone ingrowth with time (Wu
et al., 2021). It is reasonable to consider that an increase in the size of
the lateral opening results in more bone tissue infiltrating the internal
opening of the scaffold at an earlier stage, thereby promoting more bone
formation. Taniguchi et al. prepared porous titanium implants of 65% in
porosity for in vivo studies (average pore size 300, 600, and 900 μm) and
found that 600-μm pore implants had high implant fixation capacity at
2 weeks and optimal osteogenesis at 8 weeks with 600-μm pore implants
(Taniguchi et al., 2016). Therefore, the expected scaffold pore size of
550 μmwas selected for this study, and the actual pore sizes for the 57-S
and 70-S scaffolds after sintering were 458 and 464.2 μm, respectively.
The 57-G and 70-G granules had an average pore size of 316.3 and
505.8 μm, respectively. All of the implants were able to be beneficial for
new bone ingrowth and vascularization (Figure 2D).

To investigate the effect of porosity on the mechanical properties of
CSi-Mg5 scaffolds, this study fabricated IWP structures with two
porosities by varying the pore wall thickness based on the TPMS

pore network model. Despite some attempts to alter the porosity of the
biomaterial by traditional pore manufacturing techniques, the changes
in porosity are often accompanied by the pore size (Kasten et al., 2008).
Pore size is also a key factor in the mechanical properties of the porous
scaffolds. In our study, the IWP pore scaffolds with a pore size of nearly
550 μm were successfully fabricated, and the 57-S and 70-S scaffolds
exhibited appropriate compressive strength (>12MPa; Figure 2B).
Meanwhile, the CSi-Mg5 scaffolds remained above 6MPa in
compressive strength after soaking in the Tris solution for 4 weeks,
which was able to match the strength of trabecular bone (2–6MPa)
(Subramaniam et al., 2016). Obviously, the scaffold strength showed a
decreasing trend with the increasing scaffold porosity and immersion
time (Figure 3C). Notably, our previous study has demonstrated that
the introduction of 3%–10% Mg in CSi could enhance the sintering
densification of the bioceramics and thus significantly improve the
mechanical properties (Xie et al., 2016; Wu et al., 2022; Li et al., 2023).

On the other hand, the porosity of the scaffolds plays a crucial role in
influencingmaterial degradation. The specific surface area of the granular
material was higher than that of the scaffold,
with −15.31 and −14.15 m2/kg for the model encapsulated 57-G and
70-G, respectively, and −4.85 and −4.30 m2/kg for the prepared 57-S and
70-S scaffolds, respectively (Table 1). This meant that the granular
biomaterial was exposed to more Tris solution during the immersion
experiments, while the dissolution drive caused the bioceramics to release
large amounts of calcium, magnesium, and silica ions early on before
leveling off (Figures 3D–F). The granule groups therefore exhibit faster
biodegradation (Figure 3C). By reducing the porosity of the material, the
corrosion resistance can be improved due to the reduction in the specific
surface area and vice versa. Our work shows that CSi-Mg5 is actively
degraded in vitro in the Tris solution, with mass loss showing a strong
dependence on the specific surface area. High porosity enhances inward
bone growth and osseointegration of postoperative implants, but the ideal
scaffold for bone tissue repair should have an appropriate porosity and
degradation rate (Karageorgiou and Kaplan, 2005; Kasten et al., 2008). In
the initial stages of bone repair, the space required for inward growth of
the new bone tissue and the structural stability can be maintained. In the
later stages of healing, gradual degradation is possible, with the new bone
tissue eventually filling the defect area completely.

In addition, it is worth mentioning that the scaffolds and granules
did not induce an inflammatory response in vivo in the early stages
(Figures 4C, 5). The effect of the porous implants on osteogenesis was
investigated in vivo at several time points (4–16 weeks). The pores
within the scaffold and the interconnected pores between the granules
showed that the new bone fitted tightly into the bioceramic struts and
continued to grow, confirming that bioceramics responded to
osteostimulative activity in vivo. The superior osteogenesis of the 57-
S scaffold compared to the 70-S scaffold can be attributed to the greater
surface area of the scaffold resulting in the release ofmore ions and bone
stimulation from ionolysis products in the early stages. In particular, 57-
G showedmore pronounced bone tissue at 4 and 10 weeks, possibly due
to the smaller pore size and faster biodegradation rate in the 57-G
granule fillers, resulting in superior osteoblast migration and growth.

Histological analysis also confirmed that the granule groups
showed more appreciable early-stage ingrowth of the new bone
tissue, whereas the scaffold group took longer for the new bone to
infiltrate the entire scaffold, possibly due to the synergistic activation
of ionolysis products and irregular internal pore networks
stimulating the ingrowth of bone tissue, with regular and intact
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internal pore networks leading to longer osteoblast migration.
Interestingly, the 57-G and 70-G scaffolds showed a decrease in
osteogenic BV/TV at 16 weeks, while the 57-S scaffold showed the
best osteogenic volume (Figure 5D). This may be due to the new
bone tissue remodel after the formation of the bone scab in the
granular groups and the 70-S scaffold group at 16 weeks.

Finally, it is concluded that the strength decay of CSi-Mg5 scaffolds
is related to their porosity size. All CSi-Mg5 scaffolds have a
compressive strength comparable to that of trabecular bone after
long immersion in an aqueous medium. As for the corresponding
porous granular biomaterials, the specific surface area was increased
and a faster biodissolution rate was exhibited compared to the scaffold
in vitro. Understandably, the variation in the pore structure can also
alter the stability of the bioceramics in vivo, with the early-to middle-
stag granular biomaterial facilitating bone tissue invasion throughout
the implant through massive ion release, and the scaffold providing
continuous mechanotransduction and osteoconduction. These studies
have the potential to further elucidate the influence of the pore
structural feature and morphology of the implants during
osteogenesis, particularly in favor of achieving a balance between
pore architecture optimization and biodegradation during the
prolonged phase.

5 Conclusion

In summary, bioceramic scaffolds with excellent long-term
mechanical stability and controlled degradation, as well as granular
scaffolds, were fabricated using 3D printing technology, and the
structural parameters of porosity and pore size, in vitro biodegradation
behavior, and in vivo bone tissue regeneration were systematically
evaluated. Magnesium-doped CSi bioceramic scaffolds with different
porosities show high mechanical properties. At the same time, the
differences in porosity and structure resulted in significant osteogenic
differences between the scaffold and the granular filler at early and late
stages. These experimental results indicate that the degradation rate and
long-term mechanical support of both bioceramic scaffolds and granular
implants with different degradation rates have interesting biological
properties in enhancing the bone repair effect. Therefore, the study of
the rational design of biomaterial structures and derived structures by 3D
printing is expected to provide guidance for the selection of clinical
translation and applications.
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