13 research outputs found

    Striatopallidal dysfunction underlies repetitive behavior in Shank3-deficient model of autism

    Get PDF
    The postsynaptic scaffolding protein SH3 and multiple ankyrin repeat domains 3 (SHANK3) is critical for the development and function of glutamatergic synapses. Disruption of the SHANK3-encoding gene has been strongly implicated as a monogenic cause of autism, and Shank3 mutant mice show repetitive grooming and social interaction deficits. Although basal ganglia dysfunction has been proposed to underlie repetitive behaviors, few studies have provided direct evidence to support this notion and the exact cellular mechanisms remain largely unknown. Here, we utilized the Shank3B mutant mouse model of autism to investigate how Shank3 mutation may differentially affect striatonigral (direct pathway) and striatopallidal (indirect pathway) medium spiny neurons (MSNs) and its relevance to repetitive grooming behavior in Shank3B mutant mice. We found that Shank3 deletion preferentially affects synapses onto striatopallidal MSNs. Striatopallidal MSNs showed profound defects, including alterations in synaptic transmission, synaptic plasticity, and spine density. Importantly, the repetitive grooming behavior was rescued by selectively enhancing the striatopallidal MSN activity via a Gq-coupled human M3 muscarinic receptor (hM3Dq), a type of designer receptors exclusively activated by designer drugs (DREADD). Our findings directly demonstrate the existence of distinct changes between 2 striatal pathways in a mouse model of autism and indicate that the indirect striatal pathway disruption might play a causative role in repetitive behavior of Shank3B mutant mice.National Institute of Mental Health (U.S.) (Grant 5R01MH097104

    341 Repeats is Not Enough for Methylation in a New Fragile X Mouse Model

    No full text
    AbstractFragile X syndrome (FXS) is a leading monogenic cause of intellectual disability and autism spectrum disorders, spurring decades of intense research and a multitude of mouse models. So far, these models do not recapitulate the genetic underpinning of classical FXS—CGG repeat-induced methylation of theFmr1locus—and their findings have failed to translate into the clinic. We sought to answer whether this disparity was because of low repeat length and generated a novel mouse line with 341 repeats,Fmr1hs341, which is the largest allele in mice reported to date. This repeat length is significantly longer than the 200 repeats generally required for methylation of the repeat tract and promoter region in FXS patients, which leads to silencing of theFMR1gene. Bisulfite sequencing fails to detect the robust methylation expected of FXS inFmr1hs341mice. Quantitative real-time PCR and Western blotting results also do not resemble FXS and instead produce a biochemical profile consistent with the fragile X-associated premutation disorders. These findings suggest that repeat length is unlikely to be the core determinant preventing methylation in mice, and other organisms phylogenetically closer to humans may be required to effectively model FXS.</jats:p

    Nudel Contributes to Microtubule Anchoring at the Mother Centriole and Is Involved in Both Dynein-dependent and -independent Centrosomal Protein Assembly

    No full text
    The centrosome is the major microtubule-organizing center in animal cells. Although the cytoplasmic dynein regulator Nudel interacts with centrosomes, its role herein remains unclear. Here, we show that in Cos7 cells Nudel is a mother centriole protein with rapid turnover independent of dynein activity. During centriole duplication, Nudel targets to the new mother centriole later than ninein but earlier than dynactin. Its centrosome localization requires a C-terminal region that is essential for associations with dynein, dynactin, pericentriolar material (PCM)-1, pericentrin, and γ-tubulin. Overexpression of a mutant Nudel lacking this region, a treatment previously shown to inactivate dynein, dislocates centrosomal Lis1, dynactin, and PCM-1, with little influence on pericentrin and γ-tubulin in Cos7 and HeLa cells. Silencing Nudel in HeLa cells markedly decreases centrosomal targeting of all the aforementioned proteins. Silencing Nudel also represses centrosomal MT nucleation and anchoring. Furthermore, Nudel can interact with pericentrin independently of dynein. Our current results suggest that Nudel plays a role in both dynein-mediated centripetal transport of dynactin, Lis1, and PCM-1 as well as in dynein-independent centrosomal targeting of pericentrin and γ-tubulin. Moreover, Nudel seems to tether dynactin and dynein to the mother centriole for MT anchoring

    Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair

    No full text
    Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion

    Epitope-preserving magnified analysis of proteome (eMAP)

    No full text
    Synthetic tissue-hydrogel methods have enabled superresolution investigation of biological systems using diffraction-limited microscopy. However, chemical modification by fixatives can cause loss of antigenicity, limiting molecular interrogation of the tissue gel. Here, we present epitope-preserving magnified analysis of proteome (eMAP) that uses purely physical tissue-gel hybridization to minimize the loss of antigenicity while allowing permanent anchoring of biomolecules. We achieved success rates of 96% and 94% with synaptic antibodies for mouse and marmoset brains, respectively. Maximal preservation of antigenicity allows imaging of nanoscopic architectures in 1000-fold expanded tissues without additional signal amplification. eMAP-processed tissue gel can endure repeated staining and destaining without epitope loss or structural damage, enabling highly multiplexed proteomic analysis. We demonstrated the utility of eMAP as a nanoscopic proteomic interrogation tool by investigating molecular heterogeneity in inhibitory synapses in the mouse brain neocortex and characterizing the spatial distributions of synaptic proteins within synapses in mouse and marmoset brains

    Impaired Dendritic Development and Memory in Sorbs2 Knock-Out Mice

    No full text
    Intellectual disability is a common neurodevelopmental disorder characterized by impaired intellectual and adaptive functioning. Both environmental insults and genetic defects contribute to the etiology of intellectual disability. Copy number variations of SORBS2 have been linked to intellectual disability. However, the neurobiological function of SORBS2 in the brain is unknown. The SORBS2 gene encodes ArgBP2 (Arg/c-Abl kinase binding protein 2) protein in non-neuronal tissues and is alternatively spliced in the brain to encode nArgBP2 protein. We found nArgBP2 colocalized with F-actin at dendritic spines and growth cones in cultured hippocampal neurons. In the mouse brain, nArgBP2 was highly expressed in the cortex, amygdala, and hippocampus, and enriched in the outer one-third of the molecular layer in dentate gyrus. Genetic deletion of Sorbs2 in mice led to reduced dendritic complexity and decreased frequency of AMPAR-miniature spontaneous EPSCs in dentate gyrus granule cells. Behavioral characterization revealed that Sorbs2 deletion led to a reduced acoustic startle response, and defective long-term object recognition memory and contextual fear memory. Together, our findings demonstrate, for the first time, an important role for nArgBP2 in neuronal dendritic development and excitatory synaptic transmission, which may thus inform exploration of neurobiological basis of SORBS2 deficiency in intellectual disability.Massachusetts Institute of Technology. Poitras Center for Affective Disorders ResearchBroad Institute of MIT and Harvard. Stanley Center for Psychiatric ResearchNational Institute of Mental Health (U.S.) (Grant R01MH081201to)China Scholarship Council (Graduate Fellowship)National Science Foundation (U.S.). Graduate Research Fellowship ProgramHarvard UniversityFundação para a Ciência e a Tecnologia (Portugal) (Doctoral Fellowship SFRH/BD/33894/2009)Brain & Behavior Research Foundation (National Institute of Mental Health Young Investigator Grant)Duke Institute for Brain Science

    Effects of a patient-derived de novo coding alteration of CACNA1I in mice connect a schizophrenia risk gene with sleep spindle deficits

    No full text
    © 2020, The Author(s). CACNA1I, a schizophrenia risk gene, encodes a subtype of voltage-gated T-type calcium channel CaV3.3. We previously reported that a patient-derived missense de novo mutation (R1346H) of CACNA1I impaired CaV3.3 channel function. Here, we generated CaV3.3-RH knock-in animals, along with mice lacking CaV3.3, to investigate the biological impact of R1346H (RH) variation. We found that RH mutation altered cellular excitability in the thalamic reticular nucleus (TRN), where CaV3.3 is abundantly expressed. Moreover, RH mutation produced marked deficits in sleep spindle occurrence and morphology throughout non-rapid eye movement (NREM) sleep, while CaV3.3 haploinsufficiency gave rise to largely normal spindles. Therefore, mice harboring the RH mutation provide a patient derived genetic model not only to dissect the spindle biology but also to evaluate the effects of pharmacological reagents in normalizing sleep spindle deficits. Importantly, our analyses highlighted the significance of characterizing individual spindles and strengthen the inferences we can make across species over sleep spindles. In conclusion, this study established a translational link between a genetic allele and spindle deficits during NREM observed in schizophrenia patients, representing a key step toward testing the hypothesis that normalizing spindles may be beneficial for schizophrenia patients
    corecore