1,830 research outputs found

    Genetic Programming for Object Detection : a Two-Phase Approach with an Improved Fitness Function

    Get PDF
    This paper describes two innovations that improve the efficiency and effectiveness of a genetic programming approach to object detection problems. The approach uses genetic programming to construct object detection programs that are applied, in a moving window fashion, to the large images to locate the objects of interest. The first innovation is to break the GP search into two phases with the first phase applied to a selected subset of the training data, and a simplified fitness function. The second phase is initialised with the programs from the first phase, and uses the full set of training data with a complete fitness function to construct the final detection programs. The second innovation is to add a program size component to the fitness function. This approach is examined and compared with a neural network approach on three object detection problems of increasing difficulty. The results suggest that the innovations increase both the effectiveness and the efficiency of the genetic programming search, and also that the genetic programming approach outperforms a neural network approach for the most difficult data set in terms of the object detection accuracy

    Negative Charges in the Transmembrane Domains of the HERG K Channel Are Involved in the Activation- and Deactivation-gating Processes

    Get PDF
    The transmembrane domains of HERG (S1–S3) contain six negative charges: three are conserved in all voltage-gated K channels (D456 and D466 in S2, D501 in S3) and three are unique to the EAG family (D411 in S1, D460 in S2, and D509 in S3). We infer the functional role of these aspartates by studying how substituting them with cysteine, one at a time, affects the channel function. D456C is not functional, suggesting that this negative charge may play a critical role in channel protein folding during biogenesis, as has been shown for its counterpart in the Shaker channel. Data from the other five functional mutants suggest that D411 can stabilize the HERG channel in the closed state, while D460 and D509 have the opposite effect. D466 and D501 both may contribute to voltage-sensing during the activation process. On the other hand, all five aspartates work in a concerted fashion in contributing to the slow deactivation process of the HERG channel. Accessibility tests of the introduced thiol groups to extracellular MTS reagents indicate that water-filled crevices penetrate deep into the HERG protein core, reaching the cytoplasmic halves of S1 and S2. At these deep locations, accessibility of 411C and 466C to the extracellular aqueous phase is voltage dependent, suggesting that conformational changes occur in S1 and S2 or the surrounding crevices during gating. Increasing extracellular [H+] accelerates HERG deactivation. This effect is suppressed by substituting the aspartates with cysteine, suggesting that protonation of these aspartates may contribute to the signaling pathway whereby external [H+] influences conformational changes in the channel's cytoplasmic domains (where deactivation takes place). There is no evidence for a metal ion binding site coordinated by negative charges in the transmembrane domains of HERG, as the one described for the EAG channel

    Structural and Functional Role of the Extracellular S5-P Linker in the HERG Potassium Channel

    Get PDF
    C-type inactivation in the HERG channel is unique among voltage-gated K channels in having extremely fast kinetics and strong voltage sensitivity. This suggests that HERG may have a unique outer mouth structure (where conformational changes underlie C-type inactivation), and/or a unique communication between the outer mouth and the voltage sensor. We use cysteine-scanning mutagenesis and thiol-modifying reagents to probe the structural and functional role of the S5-P (residues 571–613) and P-S6 (residues 631–638) linkers of HERG that line the outer vestibule of the channel. Disulfide formation involving introduced cysteine side chains or modification of side chain properties at “high-impact” positions produces a common mutant phenotype: disruption of C-type inactivation, reduction of K+ selectivity, and hyperpolarizing shift in the voltage-dependence of activation. In particular, we identify 15 consecutive positions in the middle of the S5-P linker (583–597) where side chain modification has marked impact on channel function. Analysis of the degrees of mutation-induced perturbation in channel function along 583–597 reveals an α-helical periodicity. Furthermore, the effects of MTS modification suggest that the NH2-terminal of this segment (position 584) may be very close to the pore entrance. We propose a structural model for the outer vestibule of the HERG channel, in which the 583–597 segment forms an α-helix. With the NH2 terminus of this helix sitting at the edge of the pore entrance, the length of the helix (∼20 Å) allows its other end to reach and interact with the voltage-sensing domain. Therefore, the “583–597 helix” in the S5-P linker of the HERG channel serves as a bridge of communication between the outer mouth and the voltage sensor, that may make important contribution to the unique C-type inactivation phenotype

    Purification, crystallization and X-ray crystallographic analysis of a putative exopolyphosphatase from Zymomonas mobilis

    Get PDF
    Exopolyphosphatase (PPX) enzymes degrade inorganic polyphosphate (poly-P), which is essential for the survival of microbial cells in response to external stresses. In this study, a putative exopolyphosphatase from Zymomonas mobilis (ZmPPX) was crystallized. Crystals of the wild-type enzyme diffracted to 3.3 Å resolution and could not be optimized further. The truncation of 29 amino acids from the N-terminus resulted in crystals that diffracted to 1.8 Å resolution. The crystals belonged to space group C2, with unit-cell parameters a = 122.0, b = 47.1, c = 89.5 Å, α = γ = 90, β = 124.5°. An active-site mutant that crystallized in the same space group and with similar unit-cell parameters diffracted to 1.56 Å resolution. One molecule was identified per asymmetric unit. Analytical ultracentrifugation confirmed that ZmPPX forms a dimer in solution. It was confirmed that ZmPPX possesses exopolyphosphatase activity against a synthetic poly-P substrate.published_or_final_versio

    Specific neuroprotective effects of manual stimulation of real acupoints versus non-acupoints in rats after middle cerebral artery occlusion

    Get PDF
    The objective of this study was to investigate the effectiveness and specific effects of acupuncture on ischemic-induced damage in rats after permanent middle cerebral artery occlusion. Cerebral ischemia was induced by middle cerebral artery occlusion in male Wistar rats. The rats were divided into the following 4 groups: normal controls, ischemic, real acupuncture-treated (Shuigou, DU26), and non-acupoint-treated groups. On the third postoperative day, neurological deficit scores, cerebral blood flow, infarction volume, and neuronal cell death counts were measured. In the real acupuncture-treated group, the neurological deficit scores and cerebral blood flow were improved (p < 0.05) and the infarction volume and neuronal cell death counts were reduced (p < 0.01) compared to the ischemic and non-acupoint-treated groups. The present study demonstrated that real acupuncture was effective against focal ischemia-induced damage in rats after middle cerebral artery occlusion, and the effects were specifically related to the right needling location.Key words: specificity, real acupoint, non-acupoint, middle cerebral artery occlusion, animal experimentatio

    KCNQ1 and KCNE1 in the IKs Channel Complex Make State-dependent Contacts in their Extracellular Domains

    Get PDF
    KCNQ1 and KCNE1 (Q1 and E1) associate to form the slow delayed rectifier IKs channels in the heart. A short stretch of eight amino acids at the extracellular end of S1 in Q1 (positions 140–147) harbors six arrhythmia-associated mutations. Some of these mutations affect the Q1 channel function only when coexpressed with E1, suggesting that this Q1 region may engage in the interaction with E1 critical for the IKs channel function. Identifying the Q1/E1 contact points here may provide new insights into how the IKs channel operates. We focus on Q1 position 145 and E1 positions 40–43. Replacing all native cysteine (Cys) in Q1 and introducing Cys into the above Q1 and E1 positions do not significantly perturb the Q1 channel function or Q1/E1 interactions. Immunoblot experiments on COS-7 cells reveal that Q1 145C can form disulfide bonds with E1 40C and 41C, but not E1 42C or 43C. Correspondingly, voltage clamp experiments in oocytes reveal that Q1 145C coexpressed with E1 40C or E1 41C manifests unique gating behavior and DTT sensitivity. Our data suggest that E1 40C and 41C come close to Q1 145C in the activated and resting states, respectively, to allow disulfide bond formation. These data and those in the literature lead us to propose a structural model for the Q1/E1 channel complex, in which E1 is located between S1, S4, and S6 of three separate Q1 subunits. We propose that E1 is not a passive partner of the Q1 channel, but instead can engage in molecular motions during IKs gating

    Building KCNQ1/KCNE1 Channel Models and Probing their Interactions by Molecular-Dynamics Simulations

    Get PDF
    The slow delayed rectifier (IKs) channel is composed of KCNQ1 (pore-forming) and KCNE1 (auxiliary) subunits, and functions as a repolarization reserve in the human heart. Design of IKs-targeting anti-arrhythmic drugs requires detailed three-dimensional structures of the KCNQ1/KCNE1 complex, a task made possible by Kv channel crystal structures (templates for KCNQ1 homology-modeling) and KCNE1 NMR structures. Our goal was to build KCNQ1/KCNE1 models and extract mechanistic information about their interactions by molecular-dynamics simulations in an explicit lipid/solvent environment. We validated our models by confirming two sets of model-generated predictions that were independent from the spatial restraints used in model-building. Detailed analysis of the molecular-dynamics trajectories revealed previously unrecognized KCNQ1/KCNE1 interactions, whose relevance in IKs channel function was confirmed by voltage-clamp experiments. Our models and analyses suggest three mechanisms by which KCNE1 slows KCNQ1 activation: by promoting S6 bending at the Pro hinge that closes the activation gate; by promoting a downward movement of gating charge on S4; and by establishing a network of electrostatic interactions with KCNQ1 on the extracellular surface that stabilizes the channel in a pre-open activated state. Our data also suggest how KCNE1 may affect the KCNQ1 pore conductance

    Strain-induced partially flat band, helical snake states, and interface superconductivity in topological crystalline insulators

    Get PDF
    Topological crystalline insulators in IV-VI compounds host novel topological surface states consisting of multi-valley massless Dirac fermions at low energy. Here we show that strain generically acts as an effective gauge field on these Dirac fermions and creates pseudo-Landau orbitals without breaking time-reversal symmetry. We predict the realization of this phenomenon in IV-VI semiconductor heterostructures, due to a naturally occurring misfit dislocation array at the interface that produces a periodically varying strain field. Remarkably, the zero-energy Landau orbitals form a flat band in the vicinity of the Dirac point, and coexist with a network of snake states at higher energy. We propose that the high density of states of this flat band gives rise to interface superconductivity observed in IV-VI semiconductor multilayers at unusually high temperatures, with non-BCS behavior. Our work demonstrates a new route to altering macroscopic electronic properties to achieve a partially flat band, and paves the way for realizing novel correlated states of matter.Comment: Accepted by Nature Physic

    Probing the Outer Mouth Structure of the hERG Channel with Peptide Toxin Footprinting and Molecular Modeling

    Get PDF
    Abstract Previous studies have shown that the unusually long S5-P linker lining human ether a-go-go related gene’s (hERG’s) outer vestibule is critical for its channel function: point mutations at high-impact positions here can interfere with the inactivation process and, in many cases, also reduce the pore’s K+ selectivity. Because no data are available on the equivalent region in the available K channel crystal structures to allow for homology modeling, we used alternative approaches to model its three-dimensional structure. The first part of this article describes mutant cycle analysis used to identify residues on hERG’s outer vestibule that interact with specific residues on the interaction surface of BeKm-1, a peptide toxin with known NMR structure and a high binding affinity to hERG. The second part describes molecular modeling of hERG’s pore domain. The transmembrane region was modeled after the crystal structure of KvAP pore domain. The S5-P linker was docked to the transmembrane region based on data from previous NMR and mutagenesis experiments, as well as a set of modeling criteria. The models were further restrained by contact points between hERG’s outer vestibule and the bound BeKm-1 toxin molecule deduced from the mutant cycle analysis. Based on these analyses, we propose a working model for the open conformation of the outer vestibule of the hERG channel, in which the S5-P linkers interact with the pore loops to influence ion flux through the pore

    Topologically Protected Quantum State Transfer in a Chiral Spin Liquid

    Get PDF
    Topology plays a central role in ensuring the robustness of a wide variety of physical phenomena. Notable examples range from the robust current carrying edge states associated with the quantum Hall and the quantum spin Hall effects to proposals involving topologically protected quantum memory and quantum logic operations. Here, we propose and analyze a topologically protected channel for the transfer of quantum states between remote quantum nodes. In our approach, state transfer is mediated by the edge mode of a chiral spin liquid. We demonstrate that the proposed method is intrinsically robust to realistic imperfections associated with disorder and decoherence. Possible experimental implementations and applications to the detection and characterization of spin liquid phases are discussed.Comment: 14 pages, 7 figure
    corecore