75 research outputs found

    UGC: Unified GAN Compression for Efficient Image-to-Image Translation

    Full text link
    Recent years have witnessed the prevailing progress of Generative Adversarial Networks (GANs) in image-to-image translation. However, the success of these GAN models hinges on ponderous computational costs and labor-expensive training data. Current efficient GAN learning techniques often fall into two orthogonal aspects: i) model slimming via reduced calculation costs; ii)data/label-efficient learning with fewer training data/labels. To combine the best of both worlds, we propose a new learning paradigm, Unified GAN Compression (UGC), with a unified optimization objective to seamlessly prompt the synergy of model-efficient and label-efficient learning. UGC sets up semi-supervised-driven network architecture search and adaptive online semi-supervised distillation stages sequentially, which formulates a heterogeneous mutual learning scheme to obtain an architecture-flexible, label-efficient, and performance-excellent model

    Expression of EPO and related factors in the liver and kidney of plain and Tibetan sheep

    Get PDF
    Erythropoietin (EPO), hypoxia-inducible factor-1α (HIF-1α), hypoxia-inducible factor-2α (HIF2α), and vascular endothelial growth factor (VEGF) are key factors in the regulation of hypoxia, and can transcriptionally activate multiple genes under hypoxic conditions, thereby initiating large hypoxic stress in the network. The liver and kidneys are important metabolic organs of the body. We assessed the expression of EPO, HIF-1α, HIF-2α, and VEGF in liver and kidney tissues of plain and Tibetan sheep using hematoxylin and eosin staining, immunohistochemistry, and RT-qPCR. The results showed that EPO, HIF-1α, HIF-2α, and VEGF were expressed in tubular epithelial cells, collecting duct epithelial cells, mural epithelial cells, and the glomerular cytoplasm of Tibetan sheep, and their expression was significantly higher in Tibetan sheep than in plain sheep (P<0.05). EPO, HIF-1α, HIF-2α, and VEGF are expressed in hepatocytes, interlobular venous endothelial cells, and interlobular bile duct epithelial cells. In plain sheep, positive signals for EPO, HIF-1α, HIF-2α, and VEGF were localized mainly in interlobular venous endothelial cells, whereas VEGF and HIF-2α were negatively expressed in interlobular bile duct epithelial cells and positively expressed in EPO and HIF-1α. The differences in EPO, HIF-1α, and HIF-2α in Tibetan sheep were significantly higher than those in plain sheep (P<0.001). In the liver and kidney tissues of Tibetan sheep, EPO was associated with HIF-1α, HIF-2α, and VEGF (P<0.05). RT-qPCR results showed that EPO was not expressed, and HIF-1α, HIF-2α, and VEGF were expressed (P<0.05). The results showed that the expression of EPO, HIF-1α, HIF-2α, and VEGF in the kidney and liver of Tibetan sheep was higher than that in of plain sheep. Therefore, EPO, HIF-1α, HIF-2α, and VEGF may be involved in the adaptive response of plateau animals, which provides theoretical clarity to further explore the adaptive mechanism of plateau hypoxia in Tibetan sheep

    Cognitive-Neural Effects of Brush Writing of Chinese Characters: Cortical Excitation of Theta Rhythm

    Get PDF
    Chinese calligraphy has been scientifically investigated within the contexts and principles of psychology, cognitive science, and the cognitive neuroscience. On the basis of vast amount of research in the last 30 years, we have developed a cybernetic theory of handwriting and calligraphy to account for the intricate interactions of several psychological dimensions involved in the dynamic act of graphic production. Central to this system of writing are the role of sensory, bio-, cognitive, and neurofeedback mechanisms for the initiation, guidance, and regulation of the writing motions vis-a-vis visual-geometric variations of Chinese characters. This experiment provided the first evidence of cortical excitation in EEG theta wave as a neural hub that integrates information coming from changes in the practitioner’s body, emotions, and cognition. In addition, it has also confirmed neurofeedback as an essential component of the cybernetic theory of handwriting and calligraphy

    Analysis of age-related differences in hypoxia-related factors in yak brain tissue

    Get PDF
    The brain is an important part of the mammalian nervous system, is highly sensitive to hypoxia, and plays an important role in the adaptation of the body to hypoxic environments. This study was conducted to study the distribution and expression of hypoxia-related factors (hypoxia-inducible factor 1α, HIF-1α; erythropoietin, EPO; vascular endothelial growth factor, VEGF; vascular cell adhesion molecule, VCAM) in the cerebellum, cerebrum, medulla oblongata, and corpora quadrigemina in yaks of different ages (4d, 6-months-old and adult). Paraffin sections were obtained from the cerebellum, cerebrum, medulla oblongata, and corpora quadrigemina of healthy yak for 4-day-old, 6-months-old and adult yaks. Histological characteristics were assessed by haematoxylin staining. Immunohistochemical staining was performed to detect the distribution and expression of HIF-1α, EPO, VEGF and VCAM proteins. Immunohistochemical results showed that HIF-1α, EPO, VEGF, and VCAM were expressed in the pyramidal cell layer of the yak cerebrum, and distributed in the cerebellum granulose cell layer, Purkinje cell layer and medulla layer, and were mainly positive in Purkinje cells and medulla. It is expressed in the cell bodies of the medulla oblongata and the quadrimatous neurons. The expression level in the medulla oblongata was higher, indicating may play a crucial role in functional cohesion. The expression of HIF-1α in 4 d cerebellar tissues was higher than that in other age groups, and the expression of HIF-1α in the medulla oblongata increased with age. In addition, the expression levels of EPO and VEGF in the 6-month-old group were slightly higher than those in the other age groups. It is speculated that EPO and VEGF have obvious protective effects on brain tissue in the 6-month-old age group; VCAM showed no significant differences in the cerebrum, cerebellum, medulla oblongata, or corpora quadrigemina of the yaks. This study provides basic data for further exploration of the adaptive mechanism of plateau yak brain tissue

    Controls on planktonic foraminifera apparent calcification depths for the northern equatorial Indian Ocean

    Get PDF
    Within the world’s oceans, regionally distinct ecological niches develop due to differences in water temperature, nutrients, food availability, predation and light intensity. This results in differences in the vertical dispersion of planktonic foraminifera on the global scale. Understanding the controls on these modern-day distributions is important when using these organisms for paleoceanographic reconstructions. As such, this study constrains modern depth habitats for the northern equatorial Indian Ocean, for 14 planktonic foraminiferal species (G. ruber, G. elongatus, G. pyramidalis, G. rubescens, T. sacculifer, G. siphonifera, G. glutinata, N. dutertrei, G. bulloides, G. ungulata, P. obliquiloculata, G. menardii, G. hexagonus, G. scitula) using stable isotopic signatures (δ18O and δ13C) and Mg/Ca ratios. We evaluate two aspects of inferred depth habitats: (1) the significance of the apparent calcification depth (ACD) calculation method/equations and (2) regional species-specific ACD controls. Through a comparison with five global, (sub)tropical studies we found the choice of applied equation and δ18Osw significant and an important consideration when comparing with the published literature. The ACDs of the surface mixed layer and thermocline species show a tight clustering between 73–109 m water depth coinciding with the deep chlorophyll maximum (DCM). Furthermore, the ACDs for the sub-thermocline species are positioned relative to secondary peaks in the local primary production. We surmise that food source plays a key role in the relative living depths for the majority of the investigated planktonic foraminifera within this oligotrophic environment of the Maldives and elsewhere in the tropical oceans

    Assessing the impact of diagenesis on foraminiferal geochemistry from a low latitude, shallow-water drift deposit

    Get PDF
    Due to their large heat and moisture storage capabilities, the tropics are fundamental in modulating both regional and global climate. Furthermore, their thermal response during past extreme warming periods, such as super interglacials, is not fully resolved. In this regard, we present high-resolution (analytical) foraminiferal geochemical (δ18O and Mg/Ca) records for the last 1800 kyr from the shallow (487 m) Inner Sea drift deposits of the Maldives archipelago in the equatorial Indian Ocean. Considering the diagenetic susceptibility of these proxies, in carbonate-rich environments, we assess the integrity of a suite of commonly used planktonic and benthic foraminifera geochemical datasets (Globigerinoides ruber (white), Globigerinita glutinata (with bulla), Pulleniatina obliquiloculata (with cortex) and Cibicides mabahethi) and their use for future paleoceanographic reconstructions. Using a combination of spot Secondary Ion Mass Spectrometer, Electron Probe Micro-Analyzer and Scanning Electron Microscope image data, it is evident that authigenic overgrowths are present on both the external and internal test (shell) surfaces, yet the degree down-core as well as the associated bias is shown to be variable across the investigated species and proxies. Given the elevated authigenic overgrowth Mg/Ca (∼12–22 mmol/mol) and δ18O values (closer to the benthic isotopic compositions) the whole-test planktonic G. ruber (w) geochemical records are notably impacted beyond ∼627.4 ka (24.7 mcd). Yet, considering the setting (i.e. bottom water location) for overgrowth formation, the benthic foraminifera δ18O record is markedly less impacted with only minor diagenetic bias beyond ∼790.0 ka (28.7 mcd). Even though only the top of the G. ruber (w) and C. mabahethi records (whole-test data) would be suitable for paleo-reconstructions of absolute values (i.e. sea surface temperature, salinity, seawater δ18O), the long-term cycles, while dampened, appear to be preserved. Furthermore, planktonic species with thicker-tests (i.e. P. obliquiloculata (w/c)) might be better suited, in comparison to thinner-test counter-parts (i.e. G. glutinata (w/b), G. ruber (w)), for traditional whole- test geochemical studies in shallow, carbonate-rich environments. A thicker test equates to a smaller overall bias from the authigenic overgrowth. Overall, if the diagenetic impact is constrained, as done in this study, these types of diagenetically altered geochemical records can still significantly contribute to studies relating to past tropical seawater temperatures, latitudinal scale ocean current shifts and South Asian Monsoon dynamics

    On Becoming a Working Visual Artist: Opportunities and Challenges Along the Path

    No full text
    Thousands of students graduate from colleges and art schools every year with the goal of becoming working visual artists. The majority of them, however, find that earning a living as a working artist is a tough and competitive career path. This Capstone Project, through an extensive literature review and interviews, examines the factors and characteristics that influence whether an individual will make the leap to becoming a working visual artist. Research results indicate that primary factors in achieving the status of working visual artists include specific personality traits, experiential and career-oriented arts education, and development of strong business skills

    The complete chloroplast genome sequences of Trapa quadrispinosa and T. bicornis var. taiwanensis

    No full text
    The complete chloroplast genomes of Trapa quadrispinosa and T. bicornis var. taiwanensis were reported in this study. The chloroplast genome of T. quadrispinosa was 155,554 bp in length, containing an LSC of 88,506 bp, an SSC of 18,274 bp, and a pair of IR regions of 24,387 bp each. The chloroplast genome of T. bicornis var. taiwanensis was 155,543 bp in length, including an LSC of 88,497 bp, an SSC of 18,274 bp, and a pair of IR regions of 24,386 bp each. Both genomes had 112 genes, consisting of 78 protein-coding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic analysis revealed that the family Trapaceae was closely related to the family Sonneratiaceae
    corecore