472 research outputs found

    Geometry of quantum evolution in a nonequilibrium environment

    Full text link
    We theoretically study the geometric effect of quantum dynamical evolution in the presence of a nonequilibrium noisy environment. We derive the expression of the time dependent geometric phase in terms of the dynamical evolution and the overlap between the time evolved state and initial state. It is shown that the frequency shift induced by the environmental nonequilibrium feature plays a crucial role in the geometric phase and evolution path of the quantum dynamics. The nonequilibrium feature of the environment makes the length of evolution path becomes longer and reduces the dynamical decoherence and non-Markovian behavior in the quantum dynamics

    Melting of subducted slab dictates trace element recycling in global arcs

    Get PDF

    Dihydro­cryptopine

    Get PDF
    In the crystal structure of the title compound [systematic name: 6,7-dimeth­oxy-12-methyl-16,18-dioxa-12-aza­tetra­cyclo­[12.7.0.04,9.015,19]henicosa-1(21),4,6,8,14,19-hexaen-3-ol], C21H25NO5, the benzene rings exhibits a dihedral angle of 14.95 (4)°. In the crystal, mol­ecules are linked by pairs of O—H⋯O hydrogen bonding into inversion dimers. These dimers are further connected by C—H⋯O inter­actions

    7-Piperazine ethyl chrysin inhibits proliferation of lung cancer cells via induction of apoptosis

    Get PDF
    Purpose: To investigate the effect of 7-piperazine ethyl chrysin (PEC) on A-427 and A-549 lung cancer cell lines.Methods: The cell lines were incubated with PEC at doses of 2, 4, 6, 8 and 10 μM for 24, 48 and 72 h, and their viabilities at each time interval were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide (MTT) assay. Cell apoptosis was evaluated with annexin V fluorescein isothiocyanate/propidium iodide staining, while the expression of ERK1/2 protein was determined using western blot. The involvement of ERK1/2 in the effect of PEC on viability and apoptosis was assessed by incubating the cells with PD98059 (an inhibitor of ERK1/2).Results: Exposure to PEC at doses ≥ 4 μM significantly reduced the viability of A-427 and A-549 cell lines in time- and concentration-dependent manners at 48 h (p < 0.02). The viability of A-427 and A-549 cells was reduced to 21 and 18 %, respectively, on treatment with 8 μM PEC for 48 h. Moreover, PEC treatment induced apoptosis in A-427 (59.67 %) and A-549 (61.37 %) cells after 48 h. Western blot data revealed that PEC also significantly inhibited phosphorylation of ERK1/2 in both cancer cell lines (p < 0.05). Incubation of A-427 and A-549 cells with PD98059 for 48 h also reduced their viability and induced their apoptosis (p < 0.05).Conclusion: These results indicate that PEC inhibits the viability of lung cancer cells via inhibition of ERK1/2 expression. Thus, PEC may be efective for the treatment of lung carcinoma but further studies are required to ascertain this.Keywords: 7-Piperazine ethyl chrysin, Lung cancer cells, Apoptosis, Viability, inhibitio

    EARLY PRECAMBRIAN CRUSTAL EVOLUTION OF THE BELOMORIAN AND TRANS-NORTH CHINA OROGENS AND SUPERCONTINENTS RECONSTRUCTION

    Get PDF
    Comparative analysis of the crustal evolution of the Early Precambrian Belomorian and Trans-North China orogens (Fig. 1) has shown [Slabunov et al., 2015] that: Both belts were formed by the superposition of two Precambrian orogenies. The earth crust of the Belomorian belt was produced during the Mesoarchaean to Neoarchaean Belomorian collisional orogeny [Slabunov, 2008; Slabunov et al., 2006] and then was reworked during the Palaeoproterozoic Lapland-Kola collisional orogeny [Daly at al., 2006; Balagansky et al., 2014]. The earth crust of the Trans-North China orogen was formed during a Neoarchean accretionary orogeny and then was reworked during a Paleoproterozoic collisional orogeny [Zhao et al., 2012; Guo et al., 2012, 2005]. The Lapland granulite belt is the core of the Lapland-Kola Palaeoproterozoic collisional orogen in the Fennoscandian shield and the Khondolite belt occupies the same tectonic position in a Palaeoproterozoic collisional orogen in the North China craton.Comparative analysis of the crustal evolution of the Early Precambrian Belomorian and Trans-North China orogens (Fig. 1) has shown [Slabunov et al., 2015] that: Both belts were formed by the superposition of two Precambrian orogenies. The earth crust of the Belomorian belt was produced during the Mesoarchaean to Neoarchaean Belomorian collisional orogeny [Slabunov, 2008; Slabunov et al., 2006] and then was reworked during the Palaeoproterozoic Lapland-Kola collisional orogeny [Daly at al., 2006; Balagansky et al., 2014]. The earth crust of the Trans-North China orogen was formed during a Neoarchean accretionary orogeny and then was reworked during a Paleoproterozoic collisional orogeny [Zhao et al., 2012; Guo et al., 2012, 2005]. The Lapland granulite belt is the core of the Lapland-Kola Palaeoproterozoic collisional orogen in the Fennoscandian shield and the Khondolite belt occupies the same tectonic position in a Palaeoproterozoic collisional orogen in the North China craton

    Fracture Detection in Bio-Glues with Fluorescent-Protein-Based Optical Force Probes

    Get PDF
    Glues are being used to bond, seal, and repair in industry and biomedicine. The improvement of gluing performance is hence important for the development of new glues with better and balanced property spaces, which in turn necessitates a mechanistic understanding of their mechanical failure. Optical force probes (OFPs) allow the observation of mechanical material damage in polymers from the macro- down to the microscale, yet have never been employed in glues. Here, the development of a series of ratiometric OFPs based on fluorescent-protein–dye and protein–protein conjugates and their incorporation into genetically engineered bio-glues is reported. The OFPs are designed to efficiently modulate Förster resonance energy transfer upon force application thereby reporting on force-induced molecular alterations independent of concentration and fluorescence intensity both spectrally and through their fluorescence lifetime. By fluorescence spectroscopy in solution and in the solid state and by fluorescence lifetime imaging microscopy, stress concentrations are visualized and adhesive and cohesive failure in the fracture zone is differentiated.</p

    Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts

    Get PDF
    Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC), as well as the amygdala form a circuit implicated in emotion regulation and the pathogenesis of MDD. The aim of this study was to identify whether patients with MDD who had a history of SA show structural and functional connectivity abnormalities in the amygdala and PFC relative to MDD patients without a history of SA. We measured gray matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349, P = 0.000), and diminished functional connectivity between the bilateral amygdala and ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who had MDD without a history of SA, and the HC group. These findings provide evidence that the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for suicide intervention

    Structural and functional abnormities of amygdala and prefrontal cortex in major depressive disorder with suicide attempts

    Get PDF
    Finding neural features of suicide attempts (SA) in major depressive disorder (MDD) may be helpful in preventing suicidal behavior. The ventral and medial prefrontal cortex (PFC), as well as the amygdala form a circuit implicated in emotion regulation and the pathogenesis of MDD. The aim of this study was to identify whether patients with MDD who had a history of SA show structural and functional connectivity abnormalities in the amygdala and PFC relative to MDD patients without a history of SA. We measured gray matter volume in the amygdala and PFC and amygdala-PFC functional connectivity using structural and functional magnetic resonance imaging (MRI) in 158 participants [38 MDD patients with a history of SA, 60 MDD patients without a history of SA, and 60 healthy control (HC)]. MDD patients with a history of SA had decreased gray matter volume in the right and left amygdala (F = 30.270, P = 0.000), ventral/medial/dorsal PFC (F = 15.349, P = 0.000), and diminished functional connectivity between the bilateral amygdala and ventral and medial PFC regions (F = 22.467, P = 0.000), compared with individuals who had MDD without a history of SA, and the HC group. These findings provide evidence that the amygdala and PFC may be closely related to the pathogenesis of suicidal behavior in MDD and implicate the amygdala-ventral/medial PFC circuit as a potential target for suicide intervention
    • …
    corecore