70 research outputs found

    From Castor Oil‐Based Multifunctional Polyols to Waterborne Polyurethanes: Synthesis and Properties

    Get PDF
    Abstract A novel castor oil‐based multifunctional polyol (CM) is fabricated through mild thiol‐ene photo induced reactions using castor oil (CO) and 1‐thioglycerol (MPD) as building blocks. The effect of the reaction time, molar ratio of thiol to carbon–carbon double bond, and the loadings of photo‐initiator are optimized. The resulting CM is combined with CO and employed as cross‐linkers to prepare castor oil‐based water‐borne polyurethane emulsion with desirable mechanical properties and water resistance. Owing to the incorporation of CM cross‐linker with high hydroxyl value of 371 mg KOH/g (which is 2.27 times higher than that of the CO), the prepared castor oil‐based waterborne polyurethane (CMWPU) possesses compacted 3D network structure with high cross‐linking degree, leading to improved glass transition temperature (45 °C), tensile strength (10.8 MPa), water contact angle (87.4°), and decreased water absorption rate (16.12%) with 20% CM additions. Overall, this work illustrates the feasibility of introducing bio renewable CM combined with CO to develop castor oil‐based WPU employing a sustainable development strategy

    Analysis of the genetic architecture of maize kernel size traits by combined linkage and association mapping

    Get PDF
    Kernel size‐related traits are the most direct traits correlating with grain yield. The genetic basis of three kernel traits of maize, kernel length (KL), kernel width (KW) and kernel thickness (KT), was investigated in an association panel and a biparental population. A total of 21 single nucleotide polymorphisms (SNPs) were detected to be most significantly (P \u3c 2.25 × 10−6) associated with these three traits in the association panel under four environments. Furthermore, 50 quantitative trait loci (QTL) controlling these traits were detected in seven environments in the intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, of which eight were repetitively identified in at least three environments. Combining the two mapping populations revealed that 56 SNPs (P \u3c 1 × 10−3) fell within 18 of the QTL confidence intervals. According to the top significant SNPs, stable‐effect SNPs and the co‐localized SNPs by association analysis and linkage mapping, a total of 73 candidate genes were identified, regulating seed development. Additionally, seven miRNAs were found to situate within the linkage disequilibrium (LD) regions of the co‐localized SNPs, of which zma‐miR164e was demonstrated to cleave the mRNAs of Arabidopsis CUC1, CUC2 and NAC6 in vitro. Overexpression of zma‐miR164e resulted in the down‐regulation of these genes above and the failure of seed formation in Arabidopsis pods, with the increased branch number. These findings provide insights into the mechanism of seed development and the improvement of molecular marker‐assisted selection (MAS) for high‐yield breeding in maize

    Genome-wide association study uncovers new genetic loci and candidate genes underlying seed chilling-germination in maize

    Get PDF
    As one of the major crops, maize (Zea mays L.) is mainly distributed in tropical and temperate regions. However, with the changes of the environments, chilling stress has become a significantly abiotic stress affecting seed germination and thus the reproductive and biomass accumulation of maize. Herein, we investigated five seed germination-related phenotypes among 300 inbred lines under low-temperature condition (10 °C). By combining 43,943 single nucleotide polymorphisms (SNPs), a total of 15 significant (P < 2.03 ×  10-6) SNPs were identified to correlate with seed germination under cold stress based on the FarmCPU model in GWAS, among which three loci were repeatedly associated with multiple traits. Ten gene models were closely linked to these three variations, among which Zm00001d010454, Zm00001d010458, Zm00001d010459, and Zm00001d050021 were further verified by candidate gene association study and expression pattern analysis. Importantly, these candidate genes were previously reported to involve plant tolerance to chilling stress and other abiotic stress. Our findings contribute to the understanding of the genetic and molecular mechanisms underlying chilling germination in maize

    The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides

    Get PDF
    Grapevine (Vitis vinifera L.) is a widely cultivated fruit crop whose growth and productivity are greatly affected by low temperatures. On the other hand, wild Vitis species represent valuable genetic resources of natural stress tolerance. We have isolated and characterized a MYB-like gene encoding a putative GARP-type transcription factor from Amur grape (V. amurensis) designated as VaAQUILO. AQUILO (AQ) is induced by cold in both V. amurensis and V. vinifera, and its overexpression results in significantly improved tolerance to cold both in transgenic Arabidopsis and in Amur grape calli. In Arabidopsis, the ectopic expression of VaAQ increased antioxidant enzyme activities and up-regulated reactive oxygen species- (ROS) scavenging-related genes. Comparative mRNA sequencing profiling of 35S:VaAQ Arabidopsis plants suggests that this transcription factor is related to phosphate homeostasis like their Arabidopsis closest homologues: AtHRS1 and AtHHO2. However, when a cold stress is imposed, AQ is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GoLS) and raffinose synthase genes. Gene co-expression network (GCN) and cis-regulatory element (CRE) analyses in grapevine indicated AQ as potentially regulating VvGoLS genes. Increased RFO content was confirmed in both transgenic Arabidopsis and Amur grape calli overexpressing VaAQ. Taken together, our results imply that AQ improves cold tolerance through promoting the accumulation of osmoprotectants.This work was supported by the Youth Innovation Promotion Association of CAS (2015281), project funded by the China Postdoctoral Science Foundation (2016M601166), Science and Technology Service Network Initiative of CAS (KFJ-STS-ZDTP-025), and Grape Breeding Project of Ningxia (NXNYYZ201502)

    Overexpression of an Incw2 gene in endosperm improved yield-related traits in maize

    Get PDF
    High yield is an eternal goal for crop breeding. Incw2 protein is the enzyme in the metabolic pathway that mobilizes photoassimilated sucrose into numerous reactions of the developing plant seeds, associated with grain yield. In the research, an Incw2 gene driven by 27 kD zein promoter was specifically over-expressed in the endosperm cells of maize inbred line 18-599R by Agrobacterium-mediated genetic transformation. PCR assay displayed that ten of the regenerated plants were integrated with the target gene. By semi-quantitative RT-PCR and invertase activity analysis, five of them showed significantly higher expression of Incw2 transcripts and enzyme activity compared to the wild type. Among them, line 1 stood out because it possessed the highest level of Incw2 mRNA and enzyme activity. The effects of Incw2 over-expression were reflected in the increased chlorophyll content, improved phoÂŹtosynthesis and delay of leaf senility. In addition, yield-related traits such as ear length, ear diameter, ear weight, grain weight per ear, and hundred-kernel weight appeared to be improved in three of the transformants compared with the wild type. The grain weight per plant of line1 was increased by nearly 10%. The results collectively indicate that it is potentially practical to enhance kernel yield of maize by overexpression of Incw2 in endosperm

    Validity and reliability of a Chinese language suicide screening questionnaire-observer rating (CL-SSQ-OR) assessment for children/adolescents

    Get PDF
    BackgroundA Suicide Screening Questionnaire-Observer Rating (SSQ-OR) has been used to assess risk of suicide among individuals and to help clinicians identify and rescue individuals attempting suicide. To prevent the risk of suicide in China, a Chinese language SSQ-OR (CL-SSQ-OR) needs to be introduced.ObjectiveTo test the validity and reliability of a CL-SSQ-OR.MethodA total of 250 individuals were enrolled in this study. Each completed a CL-SSQ-OR assessment, Patient Health Questionnaire-9, and the Beck Scale for Suicide Ideation. Confirmatory factor analysis (CFA) was adopted to determine structural validity. Spearman correlation coefficients were adopted to determine criterion validity. An internal correlation coefficient (ICC) was used to test inter-consistency and Cronbach’s α coefficient was used to test split-half reliability.ResultsCFA was conducted with use of the maximum variance method to evaluate the item results. All of the items received scores &gt;0.40. In addition, good model fit indices were observed for the two-factor structure RMSEA = 0.046, TLI = 0.965, CFI = 0.977. The items’ factor loading of the CL-SSQ-OR in the first factor ranged from 0.443 to 0.878. The items’ factor loading of the CL-SSQ-OR in the second factor ranged from 0.400 to 0.810. The ICC of the total CL-SSQ-OR was 0.855. Cronbach’s α was 0.873.ConclusionThe CL-SSQ-OR described here demonstrates ideal psychometric properties and is found to be a suitable tool for screening Chinese children/adolescents who are at risk of suicide

    GWAS and WGCNA uncover hub genes controlling salt tolerance in maize (Zea mays L.) seedlings

    Get PDF
    Salt stress influences maize growth and development. To decode the genetic basis and hub genes controlling salt tolerance is a meaningful exploration for cultivating salt-tolerant maize varieties. Herein, we used an association panel consisting of 305 lines to identify the genetic loci responsible for Na+- and K+-related traits in maize seedlings. Under the salt stress, seven significant single nucleotide polymorphisms were identified using a genome-wide association study, and 120 genes were obtained by scanning the linkage disequilibrium regions of these loci. According to the transcriptome data of the above 120 genes under salinity treatment, we conducted a weighted gene co-expression network analysis. Combined the gene annotations, two SNaC/SKC (shoot Na+ content/shoot K+ content)-associated genes GRMZM2G075104 and GRMZM2G333183 were finally identified as the hub genes involved in salt tolerance. Subsequently, these two genes were verified to affect salt tolerance of maize seedlings by candidate gene association analysis. Haplotypes TTGTCCG-CT and CTT were determined as favorable/salt-tolerance haplotypes for GRMZM2G075104 and GRMZM2G333183, respectively. These findings provide novel insights into genetic architectures underlying maize salt tolerance and contribute to the cultivation of salt-tolerant varieties in maize

    The GARP/MYB-related grape transcription factor AQUILO improves cold tolerance and promotes the accumulation of raffinose family oligosaccharides

    Get PDF
    Grapevine (Vitis vinifera L.) is a widely cultivated fruit crop whose growth and productivity are greatly affected by low temperatures. On the other hand, wild Vitis species represent valuable genetic resources of natural stress tolerance. We have isolated and characterized a MYB-like gene encoding a putative GARP-type transcription factor from Amur grape (V. amurensis) designated as VaAQUILO. AQUILO (AQ) is induced by cold in both V. amurensis and V. vinifera, and its overexpression results in significantly improved tolerance to cold both in transgenic Arabidopsis and in Amur grape calli. In Arabidopsis, the ectopic expression of VaAQ increased antioxidant enzyme activities and up-regulated reactive oxygen species- (ROS) scavenging-related genes. Comparative mRNA sequencing profiling of 35S:VaAQ Arabidopsis plants suggests that this transcription factor is related to phosphate homeostasis like their Arabidopsis closest homologues: AtHRS1 and AtHHO2. However, when a cold stress is imposed, AQ is tightly associated with the cold-responsive pathway and with the raffinose family oligosaccharides (RFOs), as observed by the up-regulation of galactinol synthase (GoLS) and raffinose synthase genes. Gene co-expression network (GCN) and cis-regulatory element (CRE) analyses in grapevine indicated AQ as potentially regulating VvGoLS genes. Increased RFO content was confirmed in both transgenic Arabidopsis and Amur grape calli overexpressing VaAQ. Taken together, our results imply that AQ improves cold tolerance through promoting the accumulation of osmoprotectants

    Metabolic risk factors of cognitive impairment in young women with major psychiatric disorder

    Get PDF
    BackgroundCognitive performance improves clinical outcomes of patients with major psychiatric disorder (MPD), but is impaired by hyperglycemia. Psychotropic agents often induce metabolism syndrome (MetS). The identification of modifiable metabolic risk factors of cognitive impairment may enable targeted improvements of patient care.ObjectiveTo investigate the relationship between MetS and cognitive impairment in young women with MPD, and to explore risk factors.MethodsWe retrospectively studied women of 18–34 years of age receiving psychotropic medications for first-onset schizophrenia (SCH), bipolar disorder (BP), or major depressive disorder (MDD). Data were obtained at four time points: presentation but before psychotropic medication; 4–8 and 8–12 weeks of psychotropic therapy; and enrollment. MATRICS Consensus Cognitive Battery, (MCCB)—based Global Deficit Scores were used to assess cognitive impairment. Multiple logistic analysis was used to calculate risk factors. Multivariate models were used to investigate factors associated with cognitive impairment.ResultsWe evaluated 2,864 participants. Cognitive impairment was observed in 61.94% of study participants, and was most prevalent among patients with BP (69.38%). HbA1c within the 8–12 week-treatment interval was the most significant risk factor and highest in BP. Factors in SCH included pre-treatment waist circumference and elevated triglycerides during the 8–12 weeks treatment interval. Cumulative dosages of antipsychotics, antidepressants, and valproate were associated with cognitive impairment in all MPD subgroups, although lithium demonstrated a protect effect (all P &lt; 0.001).ConclusionsCognitive impairment was associated with elevated HbA1c and cumulative medication dosages. Pre-treatment waist circumference and triglyceride level at 8–12 weeks were risk factors in SCH. Monitoring these indices may inform treatment revisions to improve clinical outcomes
    • 

    corecore