53 research outputs found
Recommended from our members
Defects in complex oxide thin films for electronics and energy applications: Challenges and opportunities
This review focuses on recent progress in defect-engineered novel functionalities of complex oxide thin films for electronics and energy applications, and current challenges and perspectives.J.L.M.-D. also acknowledges support from the Royal Academy of Engineering, Grant CiET1819_24, and the ERC POC grant, 779444, Portapower. K.H.L.Z. is grateful for funding support from the National Natural Science Foundation of China (Grant No. 21872116)
Band edge evolution of transparent Zn M2III O4 (MIII=Co, Rh, Ir) spinels
ZnMIII
2 O4 (MIII = Co, Rh, Ir) spinels have been recently identified as promising p-type semiconductors for
transparent electronics. However, discrepancies exist in the literature regarding their fundamental optoelectronic
properties. In this paper, the electronic structures of these spinels are directly investigated using soft/hard x-ray
photoelectron and x-ray absorption spectroscopies in conjunction with density functional theory calculations.
In contrast to previous results, ZnCo2O4 is found to have a small electronic band gap with forbidden optical
transitions between the true band edges, allowing for both bipolar doping and high optical transparency.
Furthermore, increased d-d splitting combined with a concomitant lowering of Zn s/p conduction states is
found to result in a ZnCo2O4 (ZCO) < ZnRh2O4 (ZRO) ≈ ZnIr2O4 (ZIO) band gap trend, finally resolving
long-standing discrepancies in the literature
Electronic structure of lanthanide-doped bismuth vanadates: A systematic study by x-ray photoelectron and optical spectroscopies
Monoclinic BiVO 4 has emerged in recent years as one of the most promising materials for photocatalytic evolution of oxygen under solar irradiation. However, it is in itself unable to phototcatalyze reduction of water to hydrogen due to the placement of the conduction band edge below the potential required for H 2 O/H 2 reduction. As a consequence, BiVO 4 only finds application in a hybrid system. Very recently, tetragonal lanthanide-doped BiVO 4 powders have been shown to be able to both reduce and to oxidize water under solar irradiation, but to date there has been no comprehensive study of the electronic properties of lanthanide-doped bismuth vanadates aimed at establishing the systematic trends in the electronic structure in traversing the lanthanide series. Here, the accessible family of lanthanide-doped BiVO 4 quaternary oxides of stoichiometry Bi 0.5 Ln 0.5 VO 4 (Ln = La to Lu, excluding Pm) has been studied by X-ray powder diffraction, X-ray photoemission spectroscopy, and diffuse reflectance optical spectroscopy. The compounds all adopt the tetragonal zircon structure, and lattice parameters decrease monotonically in traversing the lanthanide series. At the same time, there is an increased peak broadening in the diffraction patterns as the mismatch in ionic radius between Bi 3+ and the Ln 3+ ions increases across the series. Valence band X-ray photoemission spectra show that the final state 4f n-1 structure associated with ionization of lanthanide 4f n states is superimposed on the valence band structure of BiVO 4 in the quaternary materials: in the case of the Ce-, Pr- and Tb-doped BiVO 4 , 4f-related states appear above the top of the main valence band of BiVO 4 and account for the small bandgap in the Ce compound. In all cases, the 4f structure is characteristic of the lanthanide element in the Ln(III) oxidation state. Vanadium 2p and lanthanide 3d or 4d core level photoelectron spectra of those compounds where the lanthanide may in principle adopt a higher (Ln = Ce, Pr, Tb) or lower (Ln = Eu, Yb) oxidation state further confirm the prevalence of the Ln(III) valence state throughout. The visible region optical properties of all samples were studied by diffuse reflectance spectroscopy, with a particular focus on the optical bandgap and the details of transitions associated with localized 4f states. Taken together, the results demonstrate the remarkable tunability of optical and electronic properties for these quaternary materials
Manipulating the metal-to-insulator transition and magnetic properties in manganite thin films via epitaxial strain
Strain engineering of epitaxial transition metal oxide heterostructures offers an intriguing opportunity to control electronic structures by modifying the interplay between spin, charge, orbital, and lattice degrees of freedom. Here, we demonstrate that the electronic structure, magnetic and transport properties of La0.9Ba0.1MnO3 thin films can be effectively controlled by epitaxial strain. Spectroscopic studies and first-principles calculations reveal that the orbital occupancy in Mn eg orbitals can be switched from the d3z2-r2 orbital to the dx2-y2 orbital by varying the strain from compressive to tensile. The change of orbital occupancy associated with Mn 3d-O 2p hybridization leads to dramatic modulation of the magnetic and electronic properties of strained La0.9Ba0.1MnO3 thin films. Under moderate tensile strain, an emergent ferromagnetic insulating state with an enhanced ferromagnetic Curie temperature of 215 K is achieved. These findings not only deepen our understanding of electronic structures, magnetic and transport properties in the La0.9Ba0.1MnO3 system, but also demonstrate the use of epitaxial strain as an effective knob to tune the electronic structures and related physical properties for potential spintronic device applications
Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices
We show that the recent experimental realization of spin-orbit coupling in
ultracold atomic gases can be used to study different types of spin spiral
order and resulting multiferroic effects. Spin-orbit coupling in optical
lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which
is essential for spin spiral order. By taking into account spin-orbit coupling
and an external Zeeman field, we derive an effective spin model in the Mott
insulator regime at half filling and demonstrate that the DM interaction in
optical lattices can be made extremely strong with realistic experimental
parameters. The rich finite temperature phase diagrams of the effective spin
models for fermions and bosons are obtained via classical Monte Carlo
simulations.Comment: 7 pages, 5 figure
Electronic Structure and Interface Energetics of CuBi2O4 Photoelectrodes
CuBi2O4 exhibits significant potential for the photoelectrochemical (PEC) conversion of solar energy into chemical fuels, owing to its extended visible-light absorption and positive flat band potential vs the reversible hydrogen electrode. A detailed understanding of the fundamental electronic structure and its correlation with PEC activity is of significant importance to address limiting factors, such as poor charge carrier mobility and stability under PEC conditions. In this study, the electronic structure of CuBi2O4 has been studied by a combination of hard X-ray photoemission spectroscopy, resonant photoemission spectroscopy, and X-ray absorption spectroscopy (XAS) and compared with density functional theory (DFT) calculations. The photoemission study indicates that there is a strong Bi 6s–O 2p hybrid electronic state at 2.3 eV below the Fermi level, whereas the valence band maximum (VBM) has a predominant Cu 3d–O 2p hybrid character. XAS at the O K-edge supported by DFT calculations provides a good description of the conduction band, indicating that the conduction band minimum is composed of unoccupied Cu 3d–O 2p states. The combined experimental and theoretical results suggest that the low charge carrier mobility for CuBi2O4 derives from an intrinsic charge localization at the VBM. Also, the low-energy visible-light absorption in CuBi2O4 may result from a direct but forbidden Cu d–d electronic transition, leading to a low absorption coefficient. Additionally, the ionization potential of CuBi2O4 is higher than that of the related binary oxide CuO or that of NiO, which is commonly used as a hole transport/extraction layer in photoelectrodes. This work provides a solid electronic basis for topical materials science approaches to increase the charge transport and improve the photoelectrochemical properties of CuBi2O4-based photoelectrodes
Electronic and transport properties of Li-doped NiO epitaxial thin films
NiO is a p-type wide bandgap semiconductor of use in various electronic devices ranging from solar cells to transparent transistors. Understanding and improving its optical and transport properties have been of considerable interest. In this work, we have investigated the effect of Li doping on the electronic, optical and transport properties of NiO epitaxial thin films grown by pulsed laser deposition. We show that Li doping significantly increases the p-type conductivity of NiO, but all the films have relatively low room-temperature mobilities (<0.05 cm2 V−1 s−1). The conduction mechanism is better described by small-polaron hoping model in the temperature range of 200 K < T < 330 K, and variable range hopping at T < 200 K. A combination of X-ray photoemission and O K-edge X-ray absorption spectroscopic investigations reveal that the Fermi level gradually shifts toward the valence band maximum (VBM) and a new hole state develops with Li doping. Both the VBM and hole states are composed of primarily Zhang-Rice bound states, which accounts for the small polaron character (low mobility) of hole conduction. Our work provides guidelines for the search for p-type oxide materials and device optimization
Electronic and transport properties of Li-doped NiO epitaxial thin films (vol 6, pg 2275, 2018)
Correction for ‘Electronic and transport properties of Li-doped NiO epitaxial thin films’ by J. Y. Zhang et al., J. Mater. Chem. C, 2018, 6, 2275–2282.</p
Strongly Enhanced Photovoltaic Performance and Defect Physics of Air-Stable Bismuth Oxyiodide (BiOI)
Bismuth-based compounds have recently gained increasing attention as potentially nontoxic and defect-tolerant solar absorbers. However, many of the new materials recently investigated show limited photovoltaic performance. Herein, one such compound is explored in detail through theory and experiment: bismuth oxyiodide (BiOI). BiOI thin films are grown by chemical vapor transport and found to maintain the same tetragonal phase in ambient air for at least 197 d. The computations suggest BiOI to be tolerant to antisite and vacancy defects. All-inorganic solar cells (ITO|NiO|BiOI|ZnO|Al) with negligible hysteresis and up to 80% external quantum efficiency under select monochromatic excitation are demonstrated. The short-circuit current densities and power conversion efficiencies under AM 1.5G illumination are nearly double those of previously reported BiOI solar cells, as well as other bismuth halide and chalcohalide photovoltaics recently explored by many groups. Through a detailed loss analysis using optical characterization, photoemission spectroscopy, and device modeling, direction for future improvements in efficiency is provided. This work demonstrates that BiOI, previously considered to be a poor photocatalyst, is promising for photovoltaics.R.L.Z.H. thanks Magdalene College, Cambridge. L.C.L. and J.L.M.-D. thank the EPRSC Centre for Doctoral Training: New and Sustainable Photovoltaics, and the Cambridge Winton Programme for the Physics of Sustainability for funding. T.N.H. thanks the Cambridge Graphene Centre, funded by the EPSRC. K.H.L.Z. was supported by the Herschel Smith fellowship. The U.S.-based theory and synthesis portions of this work were supported primarily as part of the Center for Next Generation Materials by Design (CNGMD), an Energy Frontier Research Center funded by the DOE Office of Science, Basic Energy Sciences under Contract No. DE-AC36-08GO28308. The MIT-based characterization portion of this work was supported primarily through a TOTAL SA research grant funded through MITei, as well as a SusChem grant funded by the National Science Foundation (No. CBET-1605495). The TCSPC work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0001088 (MIT). The computations were performed using resources sponsored by the Department of Energy’s Office of Energy Efficiency and Renewable Energy and located at the NREL. The authors also acknowledge the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation (No. DMF-08019762)
Insights into the electronic structure of OsO2 using soft and hard x-ray photoelectron spectroscopy in combination with density functional theory
Theory and experiment are combined to gain an understanding of the electronic properties of OsO2, a poorly studied metallic oxide that crystallizes in the rutile structure. Hard and soft valence-band x-ray photoemission spectra of OsO2 single crystals are in broad agreement with the results of density-functional-theory calculations, aside from a feature shifted to high binding energy of the conduction band. The energy shift corresponds to the conduction electron plasmon energy measured by reflection electron energy loss spectroscopy. The plasmon satellite is reproduced by many-body perturbation theory
- …