729 research outputs found

    A systematic review and meta-analysis of the association between cyproterone acetate and intracranial meningiomas.

    Get PDF
    The influence of exposure to hormonal treatments, particularly cyproterone acetate (CPA), has been posited to contribute to the growth of meningiomas. Given the widespread use of CPA, this systematic review and meta-analysis attempted to assess real-world evidence of the association between CPA and the occurrence of intracranial meningiomas. Systematic searches of Ovid MEDLINE, Embase and Cochrane Controlled Register of Controlled Trials, were performed from database inception to 18th December 2021. Four retrospective observational studies reporting 8,132,348 patients were included in the meta-analysis. There was a total of 165,988 subjects with usage of CPA. The age of patients at meningioma diagnosis was generally above 45 years in all studies. The dosage of CPA taken by the exposed group (n = 165,988) was specified in three of the four included studies. All studies that analyzed high versus low dose CPA found a significant association between high dose CPA usage and increased risk of meningioma. When high and low dose patients were grouped together, there was no statistically significant increase in risk of meningioma associated with use of CPA (RR = 3.78 [95% CI 0.31-46.39], p = 0.190). Usage of CPA is associated with increased risk of meningioma at high doses but not when low doses are also included. Routine screening and meningioma surveillance by brain MRI offered to patients prescribed with CPA is likely a reasonable clinical consideration if given at high doses for long periods of time. Our findings highlight the need for further research on this topic

    Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    Get PDF
    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials

    The evolution of intracranial aneurysm treatment techniques and future directions.

    Get PDF
    Treatment techniques and management guidelines for intracranial aneurysms (IAs) have been continually developing and this rapid development has altered treatment decision-making for clinicians. IAs are treated in one of two ways: surgical treatments such as microsurgical clipping with or without bypass techniques, and endovascular methods such as coiling, balloon- or stent-assisted coiling, or intravascular flow diversion and intrasaccular flow disruption. In certain cases, a single approach may be inadequate in completely resolving the IA and successful treatment requires a combination of microsurgical and endovascular techniques, such as in complex aneurysms. The treatment option should be considered based on factors such as age; past medical history; comorbidities; patient preference; aneurysm characteristics such as location, morphology, and size; and finally the operator's experience. The purpose of this review is to provide practicing neurosurgeons with a summary of the techniques available, and to aid decision-making by highlighting ideal or less ideal cases for a given technique. Next, we illustrate the evolution of techniques to overcome the shortfalls of preceding techniques. At the outset, we emphasize that this decision-making process is dynamic and will be directed by current best scientific evidence, and future technological advances

    Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model

    Get PDF
    Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children

    From Bench to Bedside: Attempt to Evaluate Repositioning of Drugs in the Treatment of Metastatic Small Cell Lung Cancer (SCLC)

    Get PDF
    BACKGROUNDS: Based on in vitro data and results of a recent drug repositioning study, some medications approved by the FDA for the treatment of various non-malignant disorders were demonstrated to have anti-SCLC activity in preclinical models. The aim of our study is to confirm whether use of these medications is associated with survival benefit. METHODS: Consecutive patients with pathologically confirmed, stage 4 SCLC were analyzed in this retrospective study. Patients that were prescribed statins, aspirin, clomipramine (tricyclic antidepressant; TCA), selective serotonin reuptake inhibitors (SSRIs), doxazosin or prazosin (α1-adrenergic receptor antagonists; ADRA1) were identified. RESULTS: There were a total of 876 patients. Aspirin, statins, SSRIs, ADRA1, and TCA were administered in 138, 72, 20, 28, and 5 cases, respectively. A statistically significant increase in median OS was observed only in statin-treated patients when compared to those not receiving any of the aforementioned medications (OS, 8.4 vs. 6.1 months, respectively; p = 0.002). The administration of SSRIs, aspirin, and ADRA1 did not result in a statistically significant OS benefit (median OS, 8.5, 6.8, and 6.0 months, respectively). The multivariate Cox model showed that, besides age and ECOG PS, radiotherapy was an independent survival predictor (Hazard Ratio, 2.151; 95% confidence interval, 1.828-2.525; p <0.001). CONCLUSIONS: Results of drug repositioning studies using only preclinical data or small numbers of patients should be treated with caution before application in the clinic. Our data demonstrated that radiotherapy appears to be an independent survival predictor in stage 4 SCLC, therefore confirming the results of other prospective and retrospective studies

    Male Germ Cell Apoptosis and Epigenetic Histone Modification Induced by Tripterygium wilfordii Hook F

    Get PDF
    Multiglycosides of Tripterygium wilfordii Hook f (GTW), a Chinese herb-derived medicine used as a remedy for rheumatoid arthritis, are considered to be a reversible anti-fertility drug affecting the mammalian spermatids. However, the mechanism behind this effect is still unknown. To study the possible mechanism behind the impact of GTW on spermatogenesis, we administered 4 groups of 4-week-old male mice with different doses of GTW. We found a dose-dependent decrease in the number of germ cells after 40 days of GTW treatment, and an increase in apoptotic cells from the low-dose to the high-dose group. During this same period the dimethylated level of histone H3 lysine 9 (H3K9me2) in GTW-treated testes germ cells declined. Additionally, spermatogonial stem cells (SSCs) from 6-day-old mice were isolated to evaluate the possible effect of GTW or triptolide on development of SSCs. We found a significantly higher incidence of apoptosis and lower dimethylation level of H3K9me2 in the SSCs of GTW or triptolide treatment than in controls. Thus, these data suggest that the GTW-induced apoptosis might be responsible for the fertility impairment in mice. This damage could be traced back to the early stages of spermatogenesis. GTW also affected the epigenetic modification of H3K9 in spermatogenesis. Molecular dynamics simulation suggested that triptolide and dimethylated or trimethylated H3K9 might have similar interaction mechanisms with EED (embryonic ectoderm development). These candidate activation mechanisms provide the first glimpse into the pathway of GTW-induced gonad toxicity, which is crucial for further research and clinical application

    Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship

    Get PDF
    Optogenetics allows the manipulation of neural activity in freely moving animals with millisecond precision, but its application in Drosophila melanogaster has been limited. Here we show that a recently described red activatable channelrhodopsin (ReaChR) permits control of complex behavior in freely moving adult flies, at wavelengths that are not thought to interfere with normal visual function. This tool affords the opportunity to control neural activity over a broad dynamic range of stimulation intensities. Using time-resolved activation, we show that the neural control of male courtship song can be separated into (i) probabilistic, persistent and (ii) deterministic, command-like components. The former, but not the latter, neurons are subject to functional modulation by social experience, which supports the idea that they constitute a locus of state-dependent influence. This separation is not evident using thermogenetic tools, a result underscoring the importance of temporally precise control of neuronal activation in the functional dissection of neural circuits in Drosophila

    Human blood autoantibodies in the detection of colorectal cancer

    Get PDF
    Colorectal cancer (CRC) is the second most common malignancy in the western world. Early detection and diagnosis of all cancer types is vital to improved prognosis by enabling early treatment when tumours should be both resectable and curable. Sera from 3 different cohorts; 42 sera (21 CRC and 21 matched controls) from New York, USA, 200 sera from Pittsburgh, USA (100 CRC and 100 controls) and 20 sera from Dundee, UK (10 CRC and 10 controls) were tested against a panel of multiple tumour-associated antigens (TAAs) using an optimised multiplex microarray system. TAA specific IgG responses were interpo- lated against the internal IgG standard curve for each sample. Individual TAA specific responses were examined in each cohort to determine cutoffs for a robust initial scoring method to establish sensitivity and specificity. Sensitivity and specificity of combinations of TAAs provided good discrimination between cancer-positive and normal serum. The overall sensitivity and specificity of the sample sets tested against a panel of 32 TAAs were 61.1% and 80.9% respectively for 6 antigens; p53, AFP, K RAS, Annexin, RAF1 and NY-CO16. Furthermore, the observed sensitivity in Pittsburgh sample set in different clinical stages of CRC;stageI(n=19),stageII(n=40),stageIII(n=34)andstageIV(n=6)wassimilar (73.6%, 75.0%, 73.5% and 83.3%, respectively), with similar levels of sensitivity for right and left sided CRC. We identified an antigen panel of sufficient sensitivity and specificity for early detection of CRC, based upon serum profiling of autoantibody response using a robust multiplex antigen microarray technology. This opens the possibility of a blood test for screening and detection of early colorectal cancer. However this panel will require further validation studies before they can be proposed for clinical practice

    IL-1β Is Upregulated in the Diabetic Retina and Retinal Vessels: Cell-Specific Effect of High Glucose and IL-1β Autostimulation

    Get PDF
    Many molecular and cellular abnormalities detected in the diabetic retina support a role for IL-1β-driven neuroinflammation in the pathogenesis of diabetic retinopathy. IL-1β is well known for its role in the induction and, through autostimulation, amplification of neuroinflammation. Upregulation of IL-1β has been consistently detected in the diabetic retina; however, the mechanisms and cellular source of IL-1β overexpression are poorly understood. The aim of this study was to investigate the effect of high glucose and IL-1β itself on IL-1β expression in microglial, macroglial (astrocytes and Müller cells) and retinal vascular endothelial cells; and to study the effect of diabetes on the expression of IL-1β in isolated retinal vessels and on the temporal pattern of IL-1β upregulation and glial reactivity in the retina of streptozotocin-diabetic rats. IL-1β was quantified by RealTime RT-PCR and ELISA, glial fibrillar acidic protein, α2-macroglobulin, and ceruloplasmin by immunoblotting. We found that high glucose induced a 3-fold increase of IL-1β expression in retinal endothelial cells but not in macroglia and microglia. IL-1β induced its own synthesis in endothelial and macroglial cells but not in microglia. In retinal endothelial cells, the high glucose-induced IL-1β overexpression was prevented by calphostin C, a protein kinase C inhibitor. The retinal vessels of diabetic rats showed increased IL-1β expression as compared to non-diabetic rats. Retinal expression of IL-1β increased early after the induction of diabetes, continued to increase with progression of the disease, and was temporally associated with upregulation of markers of glial activation. These findings point to hyperglycemia as the trigger and to the endothelium as the origin of the initial retinal upregulation of IL-1β in diabetes; and to IL-1β itself, via autostimulation in endothelial and macroglial cells, as the mechanism of sustained IL-1β overexpression. Interrupting the vicious circle triggered by IL-1β autostimulation could limit the progression of diabetic retinopathy

    Use of a Generalized Additive Model to Investigate Key Abiotic Factors Affecting Microcystin Cellular Quotas in Heavy Bloom Areas of Lake Taihu

    Get PDF
    Lake Taihu is the third largest freshwater lake in China and is suffering from serious cyanobacterial blooms with the associated drinking water contamination by microcystin (MC) for millions of citizens. So far, most studies on MCs have been limited to two small bays, while systematic research on the whole lake is lacking. To explain the variations in MC concentrations during cyanobacterial bloom, a large-scale survey at 30 sites across the lake was conducted monthly in 2008. The health risks of MC exposure were high, especially in the northern area. Both Microcystis abundance and MC cellular quotas presented positive correlations with MC concentration in the bloom seasons, suggesting that the toxic risks during Microcystis proliferations were affected by variations in both Microcystis density and MC production per Microcystis cell. Use of a powerful predictive modeling tool named generalized additive model (GAM) helped visualize significant effects of abiotic factors related to carbon fixation and proliferation of Microcystis (conductivity, dissolved inorganic carbon (DIC), water temperature and pH) on MC cellular quotas from recruitment period of Microcystis to the bloom seasons, suggesting the possible use of these factors, in addition to Microcystis abundance, as warning signs to predict toxic events in the future. The interesting relationship between macrophytes and MC cellular quotas of Microcystis (i.e., high MC cellular quotas in the presence of macrophytes) needs further investigation
    corecore