76 research outputs found

    Amplitude-Dependent Acoustic Absorber

    Get PDF
    In this chapter, we consider the design of 1D amplitude-dependent acoustic absorber, i.e., acoustic metamaterial composed of an air-filled waveguide periodically side-loaded by holes. Firstly we present experimental results about high-amplitude sound wave propagation in the structure. We find that there is not only the linear viscothermal and radiation losses, but also the nonlinear losses. High-amplitude sound waves at the locations of the side holes could introduce nonlinear losses, which is due to the geometrical discontinuity. This phenomenon could be found in experiments about amplitude-dependent reflection, transmission, and absorption coefficients. The experimental results show the possibility to use the system as a nonlinear absorber, that is, nonlinear losses change the nature of the device from a reflective to an absorbing one. Our results reveal the role of nonlinear losses in the proposed device and also provide a quite accurate analytical model to capture the effect of such losses. In the end, we analytically tune the parameters of the device and design 1D amplitude-dependent acoustic absorber

    Bright and Gap Solitons in Membrane-Type Acoustic Metamaterials

    Full text link
    We study analytically and numerically envelope solitons (bright and gap solitons) in a one-dimensional, nonlinear acoustic metamaterial, composed of an air-filled waveguide periodically loaded by clamped elastic plates. Based on the transmission line approach, we derive a nonlinear dynamical lattice model which, in the continuum approximation, leads to a nonlinear, dispersive and dissipative wave equation. Applying the multiple scales perturbation method, we derive an effective lossy nonlinear Schr\"odinger equation and obtain analytical expressions for bright and gap solitons. We also perform direct numerical simulations to study the dissipation-induced dynamics of the bright and gap solitons. Numerical and analytical results, relying on the analytical approximations and perturbation theory for solions, are found to be in good agreement

    GLP-1RAs caused gastrointestinal adverse reactions of drug withdrawal: a system review and network meta-analysis

    Get PDF
    BackgroundGlucagon-like peptide-1 receptor agonists (GLP-1RAs) significantly reduce postprandial blood glucose, inhibit appetite, and delay gastrointestinal emptying. However, it is controversial that some patients are intolerant to GLP-1RAs.MethodsPubMed, Embase, Web of Science, and Cochrane Library were searched for randomized controlled trials (RCTs) using GLP-1RAs with documented withdrawal due to gastrointestinal adverse reactions (GI AEs) from their inception to September 28, 2022. After extracting the information incorporated into the studies, a random-effects network meta-analysis was performed within a frequentist framework.Results64 RCTs were finally enrolled, which included six major categories of the GLP-1RA. The sample size of the GLP-1RAs treatment group was 16,783 cases. The risk of intolerable gastrointestinal adverse reactions of Liraglutide and Semaglutide was higher than that of Dulaglutide. Meanwhile, the higher the dose of the same GLP-1RA preparation, the more likely to cause these adverse reactions. These intolerable GI AEs were not significantly related to drug homology or formulations and may be related to the degree of suppression of the appetite center.ConclusionDulaglutide caused the lowest intolerable GI AEs, while Liraglutide and Semaglutide were the highest. For Semaglutide, the higher the dose, the more likely it is to drive GI AEs. Meanwhile, the risk of these GI AEs is independent of the different formulations of the drug. All these findings can effectively guide individualized treatment.Systematic review registrationhttps://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022359346, identifier CRD42022359346

    Cognitive Deficits and Associated ERP N400 Abnormalities in FXTAS With Parkinsonism

    Get PDF
    Objective: To examine cognitive deficits and associated brain activity in fragile X-associated tremor/ataxia syndrome (FXTAS) patients with parkinsonism (FXTp+), in relation to FXTAS patients without parkinsonism (FXTp-), and normal elderly controls (NC).Methods: Retrospective reviews were performed in 65 FXTAS patients who participated in the event-related brain potential (ERP) study and also had either a videotaped neurological examination or a neurological examination for extrapyramidal signs. Parkinsonism was defined as having bradykinesia with at least one of the following: rest tremor, postural instability, hypermyotonia, or rigidity. Eleven FXTp+ patients were identified and compared to 11 matched FXTp- and 11 NC. Main ERP measures included the N400 congruity effect, N400 repetition effect, and the late positive component (LPC) repetition effect.Results: When compared with FXTp- and NC, the FXTp+ group showed more severe deficits in executive function, cued-recall, recognition memory, along with a significantly reduced N400 repetition effect (thought to index semantic processing and verbal learning/memory) which was correlated with poorer verbal memory. Across all patients, FMR1 mRNA levels were inversely correlated with delayed recall on the California Verbal Learning Test (CVLT).Interpretation: The findings of more prominent executive dysfunction and verbal learning/memory deficits in FXTp+ than FXTp- are consistent with findings in Parkinson’s disease (PD), and may indicate that concomitant and/or synergistic pathogenetic mechanisms associated with PD play a role in FXTAS. These results have implications not only for understanding the cognitive impairments associated with the parkinsonism subtype of FXTAS, but also for the development of new interventions for these patients

    Ozone formation sensitivity indicated by highly oxygenated organic molecules

    No full text
    Ozone, an important and ubiquitous trace gas, protects lives from harm of solar ultraviolet (UV) radiation in the stratosphere but behaves as a toxic compound in the troposphere to living organisms. Also, tropospheric ozone is a vital oxidant or source of daytime oxidant (i.e., OH radical) for e.g., different volatile organic compounds (VOCs). Affecting global radiation balance directly or indirectly by acting as cloud condensation nuclei and having negative impact to human health, aerosols are widely studied for over a century. Highly oxygenated organic molecules (HOM) were proved to be a large source of secondary organic aerosol (SOA) and their oxidation formation pathways from VOCs can also trigger the production of ozone once involving NOx (=NO+NO2) and UV light. The highly nonlinear relationship among ozone, NOx, and VOCs (O3-NOx-VOC sensitivity or O3 formation sensitivity) has been researched since last century. The complex system was recently reflected during COVID-19 lockdowns: reduction of NOx increased the ozone production. This is because the system was in VOC-limited regime, where reducing VOCs is the most efficient way to reduce O3. However, the determination of O3 formation regimes (either VOC-limited or NOx-limited) is challenging in different environmental conditions. The intrinsic connection between HOM and O3 formation provide a new insight: the proportions of VOCs and NOx not only affect the O3 formation regimes but also impact the distribution of HOM species. Therefore, in this study, we try to unveil the indicating role of HOM species on the O3 formation sensitivity by chamber experimental works with a nitrate chemical ionization mass spectrometer (CI-APi-TOF) and gas monitors. Injected NOx and VOCs step by step, the experiments were designed to make the atmosphere-mimicking system change between those two regimes. The ratio between HOM-dimers and HOM organic nitrate monomers was selected as the indicator for O3 formation sensitivity due to their closely connected chemical reactions, involving peroxy radicals. Furthermore, a simple box model was developed for simulating chamber results and obtaining O3 isopleths to visually show the O3 formation regimes. Through experimental and model results, it can be inferred that ratios below 0.2 consistently correspond to the VOC-limited regime, whereas ratios above 0.5 consistently correspond to the NOx-limited regime. This study demonstrates that the ratio based on HOM species could additionally indicate the O3 formation sensitivity of ambient air when we use CI-APi-TOF to investigate the chemical compounds and aerosol formation, helping to elaborate the O3 pollution in the real troposphere

    Phénomènes non linéaires dans les métamatériaux acoustiques 1D

    No full text
    The subject of this PhD thesis is the propagation of nonlinear waves in 1D acoustic metamaterials. More specifically we aim to study the interplay between nonlinearity, loss and dispersion. Our studies combine analytical calculations, numerical simulations and experimental results. In particular we focus our analysis on two main phenomena: the second harmonic generation and the formation of solitary waves. Two different acoustic metamaterials are studied: (i) A waveguide loaded with a periodic distribution of side holes (featuring negative effective bulk modulus) and (ii) a waveguide periodically loaded with clamped elastic plates (featuring negative effective mass density). Relying on the electroacoustic analogy and the transmission line approach, we derive a discrete lattice model for each system. The corresponding long wavelength, continuum approximation of the lattice models, leads to a nonlinear, dispersive and dissipative wave equation. From the latter, by utilising a perturbation method, we obtain analytical results regarding the second harmonic generation. Furthermore with the use of a multiple scale analysis we find various envelope (bright, gap, black and gray) soliton solutions supported by the acoustic metamaterial. The analytical predictions are corroborated by direct numerical simulations. We finally perform experiments on an acoustic waveguide loaded with a periodic distribution of side holes and measure the second harmonic generation in close agreement with our theoretical predictions.Cette thèse porte sur la propagation d’ondes non-linéaires dans des métamatériaux acoustiques unidimensionnels. Plus précisément, nous voulons étudier les interactions entre les non-linéarités, les pertes et la dispersion. Ce travail combine des calculs analytiques, des simulations numériques et des résultats expérimentaux. En particulier, nous concentrons notre analyses sur deux phénomènes : la génération du second harmonique et la formation de solitons acoustiques. Deux types différents de métamatériaux sont étudiés : (i) un guide d’onde chargé par une distribution périodique de trous latéraux (milieu à densité effective négative) et (ii) un guide d’onde chargé périodiquement par des  plaques élastiques encastrées (milieu à masse effective négative). En s’appuyant sur une analogie électroacoustique et sur la théorie des lignes de transmission, un modèle discret de la propagation est développé pour chaque système. L’approximation des grandes longueurs d’ondes est ensuite utilisée pour obtenir une modèle continu permettant d’établir une équation non-linéaire, dispersive et dissipative pour la propagation. Cette dernière est analysée à l’aide de la méthode des perturbations conduisant à une expression analytique pour la génération du second harmonique. De plus, la méthode des échelles multiples est utilisée pour obtenir les diverses solutions de solitons d’enveloppe (bright, dark et gray) présents dans les systèmes. Les prédictions analytiques sont corroborées par des simulations numériques directes et des mesures de la génération de second harmonique sont effectuées mettant en lumière un bon accord avec le modèle théorique

    PPO-DFK: A Privacy-Preserving Optimization of Distributed Fractional Knapsack with Application in Secure Footballer Configurations

    No full text
    In the optimized footballer configurations, the team coach selects the players to participate in the game based on the training status of all players. As the number of excellent players increases, the costs and budget owned by the club boss need to be considered. Obviously, the players’ costs are considered as private and sensitive and the training status are also sensitive. Therefore, the private information might be revealed in the process of data sharing and processing in this distributed manner. Considering the privacy-revealing issues in the above-mentioned scenario, this article proposes a privacy-preserving optimization for distributed fractional knapsack (PPO-DFK) problem, in which it achieves the secure footballer configurations, i.e., it is able to win the game but the sum of cost does not exceed the budget, without revealing either the expenditure/money owned by the club boss or the players’ training status owned by the team coach. In the proposed PPO-DFK scheme, it employs a novel transformation approach (TA), a secure comparison protocol and a secure sorting protocol as the building blocks to ensure the privacy protection of distributed optimization procedure, then it uses the greedy algorithm to find an efficient solution. The security of proposed PPO-DFK scheme is strictly analyzed and its effectiveness is demonstrated by the experimental results on concrete examples

    Path Planning of Unmanned Aerial Vehicle in Complex Environments Based on State-Detection Twin Delayed Deep Deterministic Policy Gradient

    No full text
    This paper investigates the path planning problem of an unmanned aerial vehicle (UAV) for completing a raid mission through ultra-low altitude flight in complex environments. The UAV needs to avoid radar detection areas, low-altitude static obstacles, and low-altitude dynamic obstacles during the flight process. Due to the uncertainty of low-altitude dynamic obstacle movement, this can slow down the convergence of existing algorithm models and also reduce the mission success rate of UAVs. In order to solve this problem, this paper designs a state detection method to encode the environmental state of the UAV’s direction of travel and compress the environmental state space. In considering the continuity of the state space and action space, the SD-TD3 algorithm is proposed in combination with the double-delayed deep deterministic policy gradient algorithm (TD3), which can accelerate the training convergence speed and improve the obstacle avoidance capability of the algorithm model. Further, to address the sparse reward problem of traditional reinforcement learning, a heuristic dynamic reward function is designed to give real-time rewards and guide the UAV to complete the task. The simulation results show that the training results of the SD-TD3 algorithm converge faster than the TD3 algorithm, and the actual results of the converged model are better
    • …
    corecore