340 research outputs found

    Functional information on meningiomas through perfusion magnetic resonance imaging

    Get PDF
    This article focuses on the use of perfusion magnetic resonance imaging (MRI), and in particular dynamic susceptibility contrast-enhanced MRI (DSC-MRI), to assess haemodynamics in meningiomas. We first introduce the basic principles of DSC-MRI and the most popular imaging techniques and perfusion parameters for data analysis of DSC-MRI. We then review the blood supply characteristics of meningiomas and how perfusion MRI is applied in meningiomas to help the subtyping of different meningiomas and to differentiate between benign and malignant meningiomas. Our first-hand experiences are also included. We conclude that DSC perfusion MRI can provide critical information on the vascularity of meningiomas that is not available with conventional MRI. DSC perfusion MRI measurements are helpful in the pre-operative subtyping and grading of meningiomas.</p

    Functional information on meningiomas through perfusion magnetic resonance imaging

    Get PDF
    This article focuses on the use of perfusion magnetic resonance imaging (MRI), and in particular dynamic susceptibility contrast-enhanced MRI (DSC-MRI), to assess haemodynamics in meningiomas. We first introduce the basic principles of DSC-MRI and the most popular imaging techniques and perfusion parameters for data analysis of DSC-MRI. We then review the blood supply characteristics of meningiomas and how perfusion MRI is applied in meningiomas to help the subtyping of different meningiomas and to differentiate between benign and malignant meningiomas. Our first-hand experiences are also included. We conclude that DSC perfusion MRI can provide critical information on the vascularity of meningiomas that is not available with conventional MRI. DSC perfusion MRI measurements are helpful in the pre-operative subtyping and grading of meningiomas.</p

    Hypercontractivity of heat semigroups on free quantum groups

    Full text link
    In this paper we study two semigroups of completely positive unital self-adjoint maps on the von Neumann algebras of the free orthogonal quantum group ON+O_N^+ and the free permutation quantum group SN+S_N^+. We show that these semigroups satisfy ultracontractivity and hypercontractivity estimates. We also give results regarding spectral gap and logarithmic Sobolev inequalities.Comment: 19 page

    Existence results for some fourth-order nonlinear elliptic problems of local superlinearity and sublinearity

    Get PDF
    AbstractIn this paper we study the existence of positive solutions for the problem (0.1)Δ2u+cΔu=f(x,u)inΩ,u⩾0,u≢0inΩ,u=Δu=0on∂Ω, where c<λ1(Ω) and f(x,u) satisfies the local superlinearity and sublinearity condition

    Is exponential gravity a viable description for the whole cosmological history?

    Full text link
    Here we analysed a particular type of F(R)F(R) gravity, the so-called exponential gravity which includes an exponential function of the Ricci scalar in the action. Such term represents a correction to the usual Hilbert-Einstein action. By using Supernovae Ia, Barionic Acoustic Oscillations, Cosmic Microwave Background and H(z)H(z) data, the free parameters of the model are well constrained. The results show that such corrections to General Relativity become important at cosmological scales and at late-times, providing an alternative to the dark energy problem. In addition, the fits do not determine any significant difference statistically with respect to the Λ\LambdaCDM model. Finally, such model is extended to include the inflationary epoch in the same gravitational Lagrangian. As shown in the paper, the additional terms can reproduce the inflationary epoch and satisfy the constraints from Planck data.Comment: 20 pages, 6 figures, analysis extended, version published in EPJ

    Mass Loss and Chemical Structures of Wheat and Maize Straws in Response to Ultravoilet-B Radiation and Soil Contact

    Get PDF
    The role of photodegradation, an abiotic process, has been largely overlooked during straw decomposition in mesic ecosystems. We investigated the mass loss and chemical structures of straw decomposition in response to elevated UV-B radiation with or without soil contact over a 12-month litterbag experiment. Wheat and maize straw samples with and without soil contact were exposed to three radiation levels: a no-sunlight control, ambient solar UV-B, and artificially elevated UV-B radiation. A block control with soil contact was not included. Compared with the no-sunlight control, UV-B radiation increased the mass loss by 14-19% and the ambient radiation by 9-16% for wheat and maize straws without soil contact after 12 months. Elevated UV-B exposure decreased the decomposition rates of both wheat and maize straws when in contact with soil. Light exposure resulted in decreased O-alkyl carbons and increased alkyl carbons for both the wheat and maize straws compared with no-sunlight control. The difference in soil contact may influence the contribution of photodegradation to the overall straw decomposition process. These results indicate that we must take into account the effects of photodegradation when explaining the mechanisms of straw decomposition in mesic ecosystems

    Robust Ranking Explanations

    Full text link
    Robust explanations of machine learning models are critical to establish human trust in the models. Due to limited cognition capability, most humans can only interpret the top few salient features. It is critical to make top salient features robust to adversarial attacks, especially those against the more vulnerable gradient-based explanations. Existing defense measures robustness using â„“p\ell_p-norms, which have weaker protection power. We define explanation thickness for measuring salient features ranking stability, and derive tractable surrogate bounds of the thickness to design the \textit{R2ET} algorithm to efficiently maximize the thickness and anchor top salient features. Theoretically, we prove a connection between R2ET and adversarial training. Experiments with a wide spectrum of network architectures and data modalities, including brain networks, demonstrate that R2ET attains higher explanation robustness under stealthy attacks while retaining accuracy.Comment: Accepted to IMLH (Interpretable ML in Healthcare) workshop at ICML 2023. arXiv admin note: substantial text overlap with arXiv:2212.1410

    Contrastive Brain Network Learning via Hierarchical Signed Graph Pooling Model

    Full text link
    Recently brain networks have been widely adopted to study brain dynamics, brain development and brain diseases. Graph representation learning techniques on brain functional networks can facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases. However, current graph learning techniques have several issues on brain network mining. Firstly, most current graph learning models are designed for unsigned graph, which hinders the analysis of many signed network data (e.g., brain functional networks). Meanwhile, the insufficiency of brain network data limits the model performance on clinical phenotypes predictions. Moreover, few of current graph learning model is interpretable, which may not be capable to provide biological insights for model outcomes. Here, we propose an interpretable hierarchical signed graph representation learning model to extract graph-level representations from brain functional networks, which can be used for different prediction tasks. In order to further improve the model performance, we also propose a new strategy to augment functional brain network data for contrastive learning. We evaluate this framework on different classification and regression tasks using the data from HCP and OASIS. Our results from extensive experiments demonstrate the superiority of the proposed model compared to several state-of-the-art techniques. Additionally, we use graph saliency maps, derived from these prediction tasks, to demonstrate detection and interpretation of phenotypic biomarkers

    Dendrimer-entrapped gold nanoparticles as potential CT contrast agents for blood pool imaging

    Get PDF
    The purpose of this study was to evaluate dendrimer-entrapped gold nanoparticles [Au DENPs] as a molecular imaging [MI] probe for computed tomography [CT]. Au DENPs were prepared by complexing AuCl4- ions with amine-terminated generation 5 poly(amidoamine) [G5.NH2] dendrimers. Resulting particles were sized using transmission electron microscopy. Serial dilutions (0.001 to 0.1 M) of either Au DENPs or iohexol were scanned by CT in vitro. Based on these results, Au DENPs were injected into mice, either subcutaneously (10 μL, 0.007 to 0.02 M) or intravenously (300 μL, 0.2 M), after which the mice were imaged by micro-CT or a standard mammography unit. Au DENPs prepared using G5.NH2 dendrimers as templates are quite uniform and have a size range of 2 to 4 nm. At Au concentrations above 0.01 M, the CT value of Au DENPs was higher than that of iohexol. A 10-μL subcutaneous dose of Au DENPs with [Au] ≥ 0.009 M could be detected by micro-CT. The vascular system could be imaged 5 and 20 min after injection of Au DENPs into the tail vein, and the urinary system could be imaged after 60 min. At comparable time points, the vascular system could not be imaged using iohexol, and the urinary system was imaged only indistinctly. Findings from this study suggested that Au DENPs prepared using G5.NH2 dendrimers as templates have good X-ray attenuation and a substantial circulation time. As their abundant surface amine groups have the ability to bind to a range of biological molecules, Au DENPs have the potential to be a useful MI probe for CT
    • …
    corecore