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Abstract

In this paper we study the existence of positive solutions for the problem

∆2u+ c∆u= f (x,u) in Ω,
u� 0, u �≡ 0 inΩ,
u=∆u= 0 on∂Ω,

(0.1)

wherec < λ1(Ω) andf (x,u) satisfies the local superlinearity and sublinearity condition.
 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

This paper is concerned with the study of existence of positive solutions for the pro

∆2u+ c∆u= f (x,u) in Ω,
u� 0, u �≡ 0 inΩ,
u=∆u= 0 on∂Ω,

(1.1)
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where∆2 denotes the biharmonic operator,c ∈ R, Ω is a bounded domain inRN and
f :Ω ×R+ →R is a Carathéodory function.

These fourth-order problems have been studied by many authors. In [1] there is a
of results obtained in this direction. At the same time, in [1] it has been point out tha
type of nonlinearity can furnish a model to study travelling waves in suspension brid

There are many results about (1.1) whenc < λ1(Ω) (where(λk(Ω))k�1 is the sequenc
of the eigenvalues of−∆ in H 1

0 (Ω)) andf (x,u) = b[(u+ 1)+ − 1]. In [2] Tarantello
found a negative solution whenb� λ1(Ω) ∗ (λ1(Ω)− c) by a degree argument. Lazer a
McKenna in [3] proved the existence of 2k − 1 solutions whenΩ ⊂ R is an interval and
b > λk(Ω) ∗ (λk(Ω)− c) by the global bifurcation method. Micheletti and Pistoia in
proved that there exist two solutions whenb > λ1(Ω) ∗ (λ1(Ω)− c) and three solution
whenb is close toλk(Ω) ∗ (λk(Ω)− c) for a more general nonlinearityg by variational
method.

In this paper we use the following terminologies. Problem (1.1) is said to be sub
(superlinear) at 0 if there existα > λ1(Ω) ∗ (λ1(Ω)− c) ands0> 0 such that

f (x, s)� (�) αs for a.e.x ∈Ω and all 0� s � s0; (1.2)

hereλ1(Ω) denotes the first eigenvalue of−∆ on H 1
0 (Ω). Problem (1.1) is said to b

superlinear (or sublinear) at∞ if there existβ > λ1(Ω)∗ (λ1(Ω)− c) ands1> 0 such that

f (x, s)� (�) βs for a.e.x ∈Ω and alls � s1. (1.3)

Zhang in [5] proved the existence of weak solutions whenf (x,u) is sublinear at∞ by
variational method.

It is the purpose to study the problem (1.1) whenf satisfies the local superlineari
and sublinearity by variational methods. Our method is similar to De Figueiredo’s m
in [6].

A good example to which our results apply is

∆2u+ c∆u= λa(x)uq + b(x)up inΩ,
u� 0, u �≡ 0 inΩ,
u=∆u= 0 on∂Ω,

(1.4)

whereλ > 0 is a parameter and the exponentsp andq satisfy 0� q < 1< p with p �
2∗ − 1 if N � 3,p <+∞ if N = 1 or 2. Here 2∗ = 2N/(N − 2).

2. Main results

We will always assumeN � 3, c < λ1(Ω), denote byσ ′ the Hölder conjugate ofσ , by
λ1(Ω) the first eigenvalue of−∆ onH 1

0 (Ω) and byλ1(Ω1) the first eigenvalue of−∆ on
H 1

0 (Ω1).
Given a bounded domainΩ ⊂RN , letV denote the Hilbert spaceH 2(Ω)∩H 1

0 (Ω). De-
note theLp(Ω) norm by‖u‖p , the norm onH 1

0 (Ω) is given by‖u‖0,1 = (∫
Ω

|∇u|2dx)1/2,
the norm onV is given by

‖u‖V =
(∫ [

(∆u)2 − c|∇u|2]dx
)1/2

.

Ω
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Note that‖u‖2
V � (λ1(Ω)− c)‖u‖2

0,1 for all u ∈ V , that is, the norm‖u‖V is stronger than
the norm‖u‖0,1.

Let f :Ω ×R+ → R be a Carathéodory function and satisfy the following conditio

(H1) f (x,0)� 0 for a.e.x ∈Ω ;
(H2) There exist 1� σ < 2∗, d1 ∈ Lσ ′

(Ω), d2> 0 such that∣∣f (x, s)∣∣� d1(x)+ d2|s|σ−1

for a.e.x ∈Ω and alls > 0;
(H3) There existΘ > 2, 1� r < 2, d ∈ L(2∗/r)′(Ω), with d � 0 a.e. inΩ , s0 � 0, such

that

ΘF(x, s)� sf (x, s)+ d(x)sr
for a.e.x ∈Ω and alls > s0, whereF(x, s)= ∫ s

0 f (x, t) dt ;
(H4) There exist 0� q < 1< p < 2∗ − 1, a0 ∈ Lσq (Ω), with σq = (2∗/(q + 1))′ and

a0 � 0 a.e. inΩ , b0 ∈ Lσp(Ω), with σp = (2∗/(p+ 1))′ andb0 � 0 a.e. inΩ , such
that

f (x, s)� a0s
q + b0s

p

for a.e.x ∈Ω and alls � 0;
(H5) There exist a nonempty subdomainΩ1 ⊂Ω , Θ1 > λ1(Ω1) ∗ (λ1(Ω1)− c), s1 > 0,

such that

F(x, s)�Θ1
s2

2
for a.e.x ∈Ω1 and all 0� s � s1;

(H6) There exist a nonempty open subsetΩ2 ⊂Ω , Θ2> 0, s2 � 0, such that

F(x, s)�Θ2s
2

for a.e.x ∈Ω2 and alls � s2, with the additional requirement that the functiond(x)
appearing in (H3) is bounded onΩ2.

There are some comments on the conditions (H2), (H3), (H4), (H5), (H6) in [6], s
omit them. Here we comment the hypothesis (H1) again. When assuming (H1), w
always understand thatf (x, s) has been extended fors < 0 by puttingf (x, s)= f (x,0)
for a.e.x ∈Ω and alls < 0. The extension technology had been used in [8,9] too. D
so, any solutionu ∈ V of{

∆2u+ c∆u= f (x,u) inΩ,
u=∆u= 0 on∂Ω

(2.1)

is automatically� 0 inΩ .
Indeed, ifu is the solution of Eq. (2.1), then−u− (whereu− = max{−u,0}) satisfies

the system{
∆u− + cu− = −v inΩ,
∆v = f (x,−u−) inΩ,

−
(2.2)
u = v = 0 on∂Ω.
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Note that the functionv = 0 on ∂Ω . Hence, the weak maximum principle applied to
second equation of (2.2) show that

v(x)� 0 for x ∈Ω.
Thus, the right-hand side of the first equation of (2.2) is positive inΩ . Becauseu− = 0 on
∂Ω andc < λ1(Ω), the weak maximum principle applied to the first equation of (2.2
turn implies thatu−(x)� 0 for all x ∈Ω , butu−(x)� 0 for all x ∈Ω , sou−(x)= 0 for
all x ∈Ω .

Solving (1.1) reduces to look for nontrivial solutions of (2.1) wheref has been extende
as above.

In addition (H5) and (H6) implya0 �≡ 0 andb0 �≡ 0 in (H4).
The main results of this paper are the following theorems.

Theorem 2.1. Under conditions(H1)–(H6)there existsη= η(p,q,N) > 0 such that prob-
lem(1.1)has at least two solutions fora0, b0:

‖a0‖p−1
σq

‖b0‖1−q
σp

< η.

One of them, call itv, satisfiesΦ(v) > 0, while the other, call itw, satisfiesΦ(w) < 0,
whereΦ denotes the associated energy:

Φ(u) := 1

2

∫
Ω

[
(∆u)2 − c|∇u|2]dx −

∫
Ω

F(x,u) dx.

In addition, iff varies in such a way that the coefficients in(H4) satisfy

a0 → 0 in Lσq (Ω) and b0 is bounded inLσp(Ω),

then the solutionw =wf can be constructed such thatwf → 0 in V .

Applying this theorem to Eq. (1.4), we have

Corollary 2.1. Assume in(1.4)λ > 0, 0 � q < 1< p < 2∗ − 1, a ∈ Lτq (Ω) with τq < σq ,
b ∈ Lτp (Ω) with τp < σp , and, in addition,a(x)� 0 a.e. inΩ in caseq = 0. Suppose

(I1) there exists a nonempty open subsetΩ1 ⊂Ω such that, onΩ1, a(x)� ε1 for some
ε1> 0 andb(x) is bounded from below;

(I2) there exists a nonempty open subsetΩ2 ⊂Ω such that, onΩ2, b(x)� ε2 for some
ε2> 0 anda(x) is bounded from above and from below.

Then there exists̃η = η̃(p, q,N) > 0 such that if

λ <
η̃

‖a+‖σq‖b+‖(1−q)(p−1)
σp

,

then problem(1.4)has at least two solutionsv andw such thatΨ (v) > 0 andΨ (w) < 0,
whereΨ denotes the energy functional associated to(1.4). Moreover, ifλ→ 0, the solution
w =wf can be constructed such thatwf → 0 in V .
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3. Proofs

Lemma 3.1. Assume(H1)–(H3). ThenΦ satisfies the(PS)condition onV .

Proof. As already observed in connection with (H1),f is extended on allΩ×R by putting
f (x, s)= f (x,0) for a.e.x ∈Ω and alls < 0. It is then clear that (H2) implies thatΦ is a
C1 functional onV .

To see thatΦ satisfies (PS) condition, first note that by (H2) the maps→ f (·, s) takes
bounded set inLσ (Ω) into bounded sets inLσ/(σ−1)(Ω) ⊂ H−1(Ω). So, and since fo
σ < 2∗, by Rellich’s theorem the spaceH 1

0 (Ω) embeds intoLσ (Ω) compactly, the map
K :H 1

0 (Ω)→H−1(Ω), given byK(s)= f (·, s), is compact. NowDΦ(s)=∆2s+c∆s−
f (·, s), and hence by Proposition 2.2.2 of [7] it suffices to show that any (PS)-seq
(un) for Φ is bounded inV .

Let (un) be a (PS) sequence, i.e.,Φ(un) is bounded andΦ ′(un)→ 0. So, forΘ as in
(H3) and for someεn → 0 and some constantC,

ΘΦ(un)−Φ ′(un)un � C + εn‖un‖V ,
where‖ · ‖V denotes the norm onV . So we have(

Θ

2
− 1

)
‖un‖2

V −
∫
Ω

(
ΘF(x,un)− unf (x,un)

)
� C + εn‖un‖V .

By (H3),(
Θ

2
− 1

)
‖un‖2

V � c′ +
∫
Ω

d(x)
(
u+
n

)r
dx + εn‖un‖V ,

wherec′ is another constant. Sincer < 2, we deduces that‖un‖V remains bounded. Thi
completes the proof of Lemma 3.1.✷
Lemma 3.2. Let 0 � q < 1<p, A> 0, B > 0, and consider the function

ΨA,B(t)= t2 −Atq+1 −Btp+1

for t � 0. Thenmax{ΨA,B(t): t � 0}> 0 if and only if

Ap−1Bq−1<
(p− 1)p−1(1− q)1−q

(p− q)p−q := η1(p, q).

Moreover, for

t = tB :=
[

1− q
B(p − q)

]1/(p−1)

,

one has

ΨA,B(tB)= t2B
[
p− 1

p− q −AB(1−q)/(p−1)
(
p− q
1− q

)(1−q)/(p−1)
]
. (3.1)
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For the proof see Lemma 3.2 of [6].

Proof of Theorem 2.1. First, we will get the first solution by the classical mountain p
theorem. We observe thatΦ(0)= 0. By (H4), Hölder inequality, and Sobolev inequali
we have

Φ(u)� 1

2
‖u‖2

V −
∫
Ω

[
a0(u

+)q+1

q + 1
+ b0(u

+)p+1

p+ 1

]
dx

� 1

2
‖u‖2

V −m1‖a0‖σq‖u‖q+1
0,1 −m2‖b0‖σp‖u‖p+1

0,1

� 1

2
‖u‖2

V − c1‖a0‖σq‖u‖q+1
V − c2‖b0‖σp‖u‖p+1

V (3.2)

for all u ∈ V , wherem1 = (q + 1)−1S−(q+1)/2, m2 = (p + 1)−1S−(p+1)/2, c1 = m1 ×
(λ1(Ω)− c)−(q+1)/2, c2 =m2(λ1(Ω)− c)−(p+1)/2, and

S := inf

{∫
Ω

|∇u|2dx: u ∈H 1
0 (Ω) and

∫
Ω

|u|2∗
dx = 1

}
.

We now apply to (3.2) Lemma 3.2 withA = 2c1‖a0‖σq andB = 2c2‖b0‖σp . This gives
that for allu ∈ V with ‖u‖V = tB , we have

Φ(u)� 1

2
ΨA,B(tB) > 0

provided thatAp−1Bq−1< η1(p, q), i.e., provided that

‖a0‖p−1
σq

‖b0‖1−q
σp

<
η1(p, q)

(2c1)p−1(2c2)1−q := η(p,q,N). (3.3)

So we have obtained, under (3.3), a “range of mountains” around 0.
Now we will look for someu2 ∈ V such thatΦ(tu2)→ −∞ as t → +∞ by condi-

tion (H6). Let us chooses3 sufficiently large so thats3 > s0 (from (H3)) and, for some
Θ3 > 0, F(x, s) � Θ3s

2 + 1 for a.e.x ∈ Ω2 and alls � s3, which is clearly possible b
(H6). Forx ∈Ω2 ands � s3, we then divide the inequality of (H3) bysF (x, s), integrate
from s3 to s and take the exponential to get

F(x, s)� F(x, s3)
(
s

s3

)Θ
exp

(
−d(x)

s∫
s3

tr−1

F(x, t)
dt

)
.

So, by (H6),

F(x, s)� csΘ (3.4)

for a.e.x ∈ Ω2 and all s � s3, wherec > 0 is a constant. We now take a functionu2 ∈
V ∩HΘ(Ω) with support inΩ2 andu2 � 0, u2 �≡ 0, and considertu2 with t � t2, where
t2 is such that measure of{x ∈Ω2: tu2(x)� s3} is> 0. We have

Φ(tu2)= t2

2
‖u2‖2

V −
∫
F(x, tu2) dx
Ω2
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and, consequently, splitting the integral overΩ2 into an integral over{x ∈Ω2: tu2(x) < s3}
and an integral over{x ∈ Ω2: tu2(x) � s3}, and applying (3.4) to the latter, we get, f
some constantsc′, c′′ with c′′ > 0,

Φ(tu2)�
t2

2
‖u2‖2

V + c′ − ctΘ
∫

{x∈Ω2: tu2(x)�s3}
(u2)

Θ dx � t2

2
‖u2‖2

V + c′ − c′′tΘ .

SinceΘ > 2, this latter relation implies thatΦ(tu2)→ −∞ ast → +∞.
Under (3.3), we apply the mountain pass theorem, which yields a critical pointv of Φ

with

Φ(v)� 1

2
ΨA,B(tB) > 0. (3.5)

This functionv is a nontrivial solution of (2.2), so we get the first solutionv.
Next, we will get the second solution by local minimization. We will show that th

existsu1 ∈ V such that

Φ(tu1) < 0 (3.6)

for all t > 0 sufficiently small by condition (H5). Take foru1 the positive eigenfunctio
associated to the principle eigenvalue of−∆ onH 1

0 (Ω1). It is known thatu1 ∈ L∞(Ω1).
By (H5), we have, fort > 0 sufficiently small (in factt � s1/‖u1‖∞, so 0� tu1 � s1),

Φ(tu1)= t2

2
‖u1‖2

V −
∫
Ω1

F(x, tu1) dx � t2

2

(
‖u1‖2

V −Θ1

∫
Ω1

(u1)
2dx

)
.

The term in parentheses is< 0 sinceΘ1> λ1(Ω1) ∗ (λ1(Ω1)− c). So we have (3.6).
It follows from (3.6) that the minimum of the (weakly lower semicontinuous) functio

Φ on the closed ball inV with center 0 and radiustB is achieved in the corresponding op
ball and thus yields a nontrivial solutionw of (2.2) with

Φ(w) < 0 and ‖w‖V < tB. (3.7)

So, we get the second solution.
This completes the proof of the existence of at least two solutions in Theorem 2.1
We now turn to the study of the asymptotic behavior of one of these two solu

Whenf varies in such a way thata0 → 0 inLσq (Ω) andb0 remains bounded inLσp(Ω),
we fix α ∈]0,1/(1− q)[ and observe that fortB = ‖a0‖ασq and for allu with ‖u‖V = tB ,
tB → 0. By (3.2), we have

Φ(u)� 1

2
‖a0‖2α

σq
− c1‖a0‖1+α(q+1)

σq
− c2‖b0‖σp‖a0‖α(p+1)

σq

= ‖a0‖2α
σq

(
1

2
− c1‖a0‖1−α(1−q)

σq
− c2‖b0‖σp‖a0‖α(p−1)

σq

)
.

Since 1−α(1−q) > 0, the expression is positive for‖a0‖σq sufficiently small, so we hav

Φ(u)� 1
ΨA,B(tB) > 0 for all u with ‖u‖V = ‖a0‖ασq = tB .
2
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By (3.7), the corresponding solutionw will converge to 0 inV . This complete the proof o
Theorem 2.1. ✷
Proof of Corollary 2.1. It is easy to verify that for eachλ > 0, conditions (H1)–(H6) o
Theorem 2.1 hold. ✷
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