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Abstract

In this paper we study the existence of positive solutions for the problem

A2y +cAu= f(x,u) ing,
u>0, u#0 in 2, (0.1)
u=Au=0 onoas2,

wherec < 11(£2) and f (x, u) satisfies the local superlinearity and sublinearity condition.
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1. Introduction

This paper is concerned with the study of existence of positive solutions for the problem

A2u+cAu=f(x,u) in 2,
u>0 uz#0 in 2, (1.2)
u=Au=0 onos2,
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where A2 denotes the biharmonic operatore R, §2 is a bounded domain i®" and
f:£2 x RT — R is a Carathéodory function.

These fourth-order problems have been studied by many authors. In [1] there is a survey
of results obtained in this direction. At the same time, in [1] it has been point out that this
type of nonlinearity can furnish a model to study travelling waves in suspension bridges.

There are many results about (1.1) whea 11 (£2) (Where(i;(£2))r>1 is the sequence
of the eigenvalues of A in H&(Q)) and f(x,u) = b[(u + 1) — 1]. In [2] Tarantello
found a negative solution whern> 11(£2) * (A1(£2) — ¢) by a degree argument. Lazer and
McKenna in [3] proved the existence of 2 1 solutions when2 C R is an interval and
b > A (82) * (A (£2) — ¢) by the global bifurcation method. Micheletti and Pistoia in [4]
proved that there exist two solutions when- 11(£2) * (A1(£2) — ¢) and three solutions
whenb is close toA;(£2) * (A (£2) — ¢) for a more general nonlinearigy by variational
method.

In this paper we use the following terminologies. Problem (1.1) is said to be sublinear
(superlinear) at 0 if there exiat> 11(£2) * (A1(£2) — ¢) andsp > 0 such that

fx,9) =2 (Las fora.ex € 2 andall 0< s < so; (1.2)

here1(£2) denotes the first eigenvalue efA on H&(.Q). Problem (1.1) is said to be
superlinear (or sublinear) at if there exist8 > 11(£2) * (A1(£2) — ¢) andsy > 0 such that
fx,s) > (L)Bs fora.ex €2 andalls > s1. (1.3)

Zhang in [5] proved the existence of weak solutions wiién, u) is sublinear ato by
variational method.

It is the purpose to study the problem (1.1) whgrsatisfies the local superlinearity
and sublinearity by variational methods. Our method is similar to De Figueiredo’s method
in [6].

A good example to which our results apply is

A%+ cAu=ra(x)u? +b(xX)u? in £,
u>0, uz#0 in £, (1.4
u=Au=0 onos2,
wherei > 0 is a parameter and the exponeptandg satisfy 0< g < 1 < p with p <
2*—1ifN>23,p<+ocif N=21or2.Here 2=2N/(N — 2).

2. Main results

We will always assum&/ > 3, ¢ < A1(£2), denote by’ the Hélder conjugate af, by
A1(82) the first eigenvalue of A on Hol(.Q) and by (£21) the first eigenvalue of A on
Hg (£20).

Given a bounded domaia C R", letV denote the Hilbert spadé?(2) N H3(£2). De-
note theL” (£2) norm by||u | ,, the norm onH(2) is given byllullo,1 = ([, Vu[?>dx)Y/?,
the norm onV is given by

12
lully = (/[(AM)Z—CIVulz]dx) .

2
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Note thatfjul|? > (A1(2) — o)||ul|3 ; forall u € V, that s, the normju||y is stronger than
the norm|ju||o.1. '
Let f:2 x RT — R be a Carathéodory function and satisfy the following conditions:

(H1) f(x,0)>0fora.ex e £2;
(H2) There exist K o < 2*, d1 € L° (£2), d> > 0 such that

| f(x, )] <dix) +dofs|”t

fora.e.x € 2 and alls > 0O;
(H3) There exis® > 2, 1<r <2,d € L&/ (), with d > 0 a.e. inf2, so > 0, such
that

OF(x,s) <sf(x,s)+d(x)s"

fora.e.x € 2 and alls > so, whereF (x,s) = [i f(x,1)dr;

(H4) There exist 6< ¢ <1< p <2 — 1, ag € L%(£2), with o, = (2*/(¢ + 1))’ and
ap>0a.e.ing2, bg e Lr(£2), with o, = (2*/(p + 1))’ andbg > 0 a.e. ing2, such
that

f(x,s) <aos? + bos?

fora.e.x € £2 and alls > 0;
(H5) There exist a nonempty subdomai C 2, ©®1 > 11(£21) * (A1(£21) — ¢), s1 > 0,
such that
2

F(x.s) 291%

fora.e.x € 21 and all 0< s < s1;
(H6) There exist a nonempty open subsetc 2, ®, > 0, s2 > 0, such that

F(x,s) > @zsz

for a.e.x € £27 and alls > sp, with the additional requirement that the functiéfx)
appearing in (H3) is bounded any,.

There are some comments on the conditions (H2), (H3), (H4), (H5), (H6) in [6], so we
omit them. Here we comment the hypothesis (H1) again. When assuming (H1), we will
always understand that(x, s) has been extended fer< 0 by putting f (x, s) = f(x, 0)
for a.e.x € £2 and alls < 0. The extension technology had been used in [8,9] too. Doing
so, any solutiom € V of

{Azu—i-cAu:f(x,u) in £, 2.1)
u=Au=0 onas2
is automatically> 0 in £2.

Indeed, ifu is the solution of Eq. (2.1), theru™ (Whereu™ = max —u, 0}) satisfies
the system

Au"+cu”=-—v in§2,
Av=f(x,—u") ing, (2.2)
u-=v=0 onas2.
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Note that the function = 0 on d£2. Hence, the weak maximum principle applied to the
second equation of (2.2) show that

v(x) <0 forxes2.

Thus, the right-hand side of the first equation of (2.2) is positive ilBBecause:™ = 0 on
952 andc < 11(£2), the weak maximum principle applied to the first equation of (2.2) in
turn implies that:~ (x) < 0 for all x € £2, butu~(x) > 0 for all x € £2, sou™(x) =0 for
all x € 2.

Solving (1.1) reduces to look for nontrivial solutions of (2.1) whérdeas been extended
as above.

In addition (H5) and (H6) imply:g # 0 andbg = 0 in (H4).

The main results of this paper are the following theorems.

Theorem 2.1. Under conditiongH1)—(H6)there existg) = n(p, ¢, N) > 0 such that prob-
lem(1.1)has at least two solutions fe, bo:

-1 1—
laollg, ~llbolly,* <.

Op

One of them, call itv, satisfies® (v) > 0, while the other, call itw, satisfies® (w) < 0O,
where® denotes the associated energy

1
D(u) = > /[(Au)z — CIVulz] dx — / F(x,u)dx.
2 2
In addition, if f varies in such a way that the coefficientgk) satisfy

ao— 0 inL%(£2) and bgisboundedinl’»(£2),

then the solutionv = wy can be constructed such that; — 0in V.
Applying this theorem to Eq. (1.4), we have

Corollary 2.1. Assume if1.4)1 >0,0< g <1< p <2*—1,a € L% (2) with 7, < g,
b e L™ (£2) with t, < 0}, and, in additiona(x) > 0 a.e. ing2 in caseg = 0. Suppose

(11) there exists a nonempty open subh&atC 2 such that, on21, a(x) > €1 for some
€1 > 0andb(x) is bounded from below

(12) there exists a nonempty open suh€etc 2 such that, onf2;, b(x) > €, for some
€2 > 0anda(x) is bounded from above and from below.

Then there existg = 7(p, g, N) > 0 such that if

n

1— -1)’
la* g, 16155 PP

A<

then problen(1.4) has at least two solutions and w such that? (v) > 0 and ¥ (w) < 0,
where¥ denotes the energy functional associate(ltd). Moreover, ifA — 0, the solution
w = wy can be constructed such thatr — 0in V.
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3. Proofs
Lemma 3.1. AssumgH1)—(H3). Then® satisfies th¢PS)condition onV.

Proof. Asalready observed in connection with (H})is extended on all2 x R by putting
f(x,s)=f(x,0) fora.e.x € 2 and alls < 0. Itis then clear that (H2) implies thdt is a
c! functional onv'.

To see thatp satisfies (PS) condition, first note that by (H2) the map f (-, s) takes
bounded set in.? (£2) into bounded sets id°/“—D(2) c H~1(£2). So, and since for
o < 2%, by Rellich’s theorem the spadéol(.(z) embeds intd.? (£2) compactly, the map
K :H}(2)— H (), givenbyK (s) = f(-,s), is compact. NowD® (s) = A5 +cAs —
f(,s), and hence by Proposition 2.2.2 of [7] it suffices to show that any (PS)-sequence
(up) for @ is bounded inv'.

Let (u,) be a (PS) sequence, i.@(u;,) is bounded and®’(u,) — 0. So, for® as in
(H3) and for some,, — 0 and some constant,

OD(uy,) — ®/(un)un <C +epllunlv,

where|| - ||y denotes the norm o¥i. So we have

e 2
E_l ”un”V_/(@F(xvun)_unf(xsun)) < C+epllunllv.
2

By (H3),

®
<5 - 1)||u,1||%, </ +/d(x)(uj{)’dx +enllunllv,
2

wherec’ is another constant. Sinee< 2, we deduces thdu, ||y remains bounded. This
completes the proof of Lemma 3.10
Lemma3.2.Let0< g <1< p, A> 0, B >0, and consider the function
Wa (1) =12 — Attt — g+l
fort > 0. Thenmax{¥y p(¢): t > 0} > 0 if and only if

o1 (PP YA —g)ta
Ar-lpa-1 _ P (p_q)p_qq =n(p.q).

Moreover, for

1, Yo
t=tp = [761} ,

one has

-1 _ g\ =a/(p=1
Wa p(tp) =12 2= — AB(l_")/(”_l)(u) : (3.1)
pP—q 1-¢g
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For the proof see Lemma 3.2 of [6].

Proof of Theorem 2.1. First, we will get the first solution by the classical mountain pass
theorem. We observe thdt(0) = 0. By (H4), Holder inequality, and Sobolev inequality,
we have

+ya+l  po(ut)PHL
”M”%/_/ doTT | bou) dx
g+1 p+1

2 q+1 p+1
Z S llully —mallaolle, lullg 3~ —ma2llboll, llullg 1

2 q+1 p+1
> Ellullv —cillaollo, lully," ™ — c2llbollo, llully, (3.2)

for all u € V, wheremy = (¢ + )18~ @tD/2 1y = (p + 1)~1s~PHD/2 ¢ = my x
(A1(2) — )@ V/2 c) = ma(h1(2) — ¢)~PTV/2, and

S::inf:/|Vu|2dx: u e Hy($2) and/lulz*dle}.
2 2

We now apply to (3.2) Lemma 3.2 With = 2c1||aolls, and B = 2c2||boll5,- This gives
that for allu € V with ||u]ly =g, we have

1
D(u) > ElI/A,B(tB) >0

provided thatA?~1B1~1 < 51(p, ¢), i.e., provided that

n(p.q)
2Lyt =P N (3.3)
So we have obtained, under (3.3), a “range of mountains” around 0.

Now we will look for someus € V such that® (tu2) - —oo ast — +oo by condi-
tion (H6). Let us chooses sufficiently large so thats > sg (from (H3)) and, for some
@3>0, F(x,s) > @352+ 1 for a.e.x € £27 and alls > s3, which is clearly possible by
(H6). Forx € £22 ands > s3, we then divide the inequality of (H3) byF (x, s), integrate
from s3 to s and take the exponential to get

s ® p trfl
F(x,s)> F(x7s3)<g> exp —d(X)/ Flx.0) dt ).
53

So, by (H6),

F(x,s) > cs? (3.4)
for a.e.x € 22 and alls > s3, wherec > 0 is a constant. We now take a functiop
V N H®(£2) with support ins22 andus > 0, u» # 0, and consideru, with ¢ > 1o, where
17 is such that measure @f € 22 ru2(x) > s3} is > 0. We have

2
t
(1) = = ually, — / F(x,tuz)dx
§22

-1 1—
laollZ Y boll 7 <
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and, consequently, splitting the integral oy2rinto an integral ovefx € £22: tua(x) < s3}
and an integral ovefx € £22: ruz(x) > s3}, and applying (3.4) to the latter, we get, for
some constants, ¢” with ¢’ > 0,

2

2
t o o t e
@ (tuz) < EIIHzII% +c —ct® / (u2)? dx < EIIHzII% +c = "%,

{xe$22 tup(x)>s3)

Since® > 2, this latter relation implies thak (ruz) — —oo ast — +oo.
Under (3.3), we apply the mountain pass theorem, which yields a critical paih®
with

D (v) = %WA,B(IB) > 0. (3.5)

This functionwv is a nontrivial solution of (2.2), so we get the first solutian
Next, we will get the second solution by local minimization. We will show that there
existsuj € V such that

®(tuy) <0 (3.6)

for all ¢+ > 0 sufficiently small by condition (H5). Take for; the positive eigenfunction
associated to the principle eigenvalue-af on Hol(.(zl). It is known thatu; € L°°(£21).
By (H5), we have, for > 0 sufficiently small (in fact < s1/]|u1llco, SO 0< tu1 < s1),

2

D (tuy) = = u)? - < 2 _ 2
ug) == llully Fx,tu)dx < 5\ ually = O1 | (w)®dx ).

21 21
The term in parentheses4s0 since®@1 > 11(£21) * (A1(£21) — ¢). So we have (3.6).
It follows from (3.6) that the minimum of the (weakly lower semicontinuous) functional
@ on the closed ball ity with center 0 and radiug is achieved in the corresponding open
ball and thus yields a nontrivial solution of (2.2) with

Dd(w) <0 and |w|y <itp. (3.7)

So, we get the second solution.
This completes the proof of the existence of at least two solutions in Theorem 2.1.
We now turn to the study of the asymptotic behavior of one of these two solutions.
When f varies in such a way that — 0 in L% (£2) andbg remains bounded in°» (£2),
we fix ¢ €]10,1/(1— g)[ and observe that fap = laollg, and for allu with |Ju|y =1z,
tg — 0. By (3.2), we have

14+a(g+1) a(p+1)
9q 9q

1
2
P (u) > > llaolls, — callaoll — c2llboll, llaoll

1
2 1-a(1- -1
= ||ao||;;(5 — cillaolly, “ 9 = c2llbollo, llaol” >>~
Since 1-a(1-gq) > 0, the expression is positive f¢uol|,, sufficiently small, so we have

1 .
D) > EWA,B(tB) >0 forallu with ||ul|y = ||a0||gq =13.
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By (3.7), the corresponding solutiamwill converge to 0 inV. This complete the proof of
Theorem 2.1. O

Proof of Corollary 2.1. It is easy to verify that for each > 0, conditions (H1)—(H6) of
Theorem 2.1 hold. O
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