3,230 research outputs found

    SUSY-QCD Effect on Top-Charm Associated Production at Linear Collider

    Get PDF
    We evaluate the contribution of SUSY-QCD to top-charm associated production at next generation linear colliders. Our results show that the production cross section of the process e+e−→tcˉortˉce^+e^-\to t\bar c{or}\bar t c could be as large as 0.1 fb, which is larger than the prediction of the SM by a factor of 10810^8.Comment: version to appear in PR

    Luttinger Liquid Instability in the One Dimensional t-J Model

    Full text link
    We study the t-J model in one dimension by numerically projecting the true ground state from a Luttinger liquid trial wave function. We find the model exhibits Luttinger liquid behavior for most of the phase diagram in which interaction strength and density are varied. However at small densities and high interaction strengths a new phase with a gap to spin excitations and enhanced superconducting correlations is found. We show this phase is a Luther-Emery liquid and study its correlation functions.Comment: REVTEX, 11 pages. 4 Figures available on request from [email protected]

    Guest Editorial Cardiovascular Health Informatics: Risk Screening and Intervention

    Get PDF
    Despite enormous efforts to prevent cardiovascular disease (CVD) in the past, it remains the leading cause of death in most countries worldwide. Around two-thirds of these deaths are due to acute events, which frequently occur suddenly and are often fatal beforemedical care can be given. New strategies for screening and early intervening CVD, in addition to the conventional methods, are therefore needed in order to provide personalized and pervasive healthcare. In this special issue, selected emerging technologies in health informatics for screening and intervening CVDs are reported. These papers include reviews or original contributions on 1) new potential genetic biomarkers for screening CVD outcomes and high-throughput techniques for mining genomic data; 2) new imaging techniques for obtaining faster and higher resolution images of cardiovascular imaging biomarkers such as the cardiac chambers and atherosclerotic plaques in coronary arteries, as well as possible automatic segmentation, identification, or fusion algorithms; 3) new physiological biomarkers and novel wearable and home healthcare technologies for monitoring them in daily lives; 4) new personalized prediction models of plaque formation and progression or CVD outcomes; and 5) quantifiable indices and wearable systems to measure them for early intervention of CVD through lifestyle changes. It is hoped that the proposed technologies and systems covered in this special issue can result in improved CVD management and treatment at the point of need, offering a better quality of life to the patient

    Bound state solutions of the Dirac-Rosen-Morse potential with spin and pseudospin symmetry

    Full text link
    The energy spectra and the corresponding two- component spinor wavefunctions of the Dirac equation for the Rosen-Morse potential with spin and pseudospin symmetry are obtained. The s−s-wave (Îș=0\kappa = 0 state) solutions for this problem are obtained by using the basic concept of the supersymmetric quantum mechanics approach and function analysis (standard approach) in the calculations. Under the spin symmetry and pseudospin symmetry, the energy equation and the corresponding two-component spinor wavefunctions for this potential and other special types of this potential are obtained. Extension of this result to Îș≠0\kappa \neq 0 state is suggested.Comment: 18 page

    Spin-charge separation at small lengthscales in the 2D t-J model

    Full text link
    We consider projected wavefunctions for the 2D t−Jt-J model. For various wavefunctions, including correlated Fermi-liquid and Luttinger-type wavefunctions we present the static charge-charge and spin-spin structure factors. Comparison with recent results from a high-temperature expansion by Putikka {\it et al.} indicates spin-charge separation at small lengthscales.Comment: REVTEX, 5 pages, 5 figures hardcopies availabl

    Variational state based on the Bethe ansatz solution and a correlated singlet liquid state in the one-dimensional t-J model

    Full text link
    The one-dimensional t-J model is investigated by the variational Monte Carlo method. A variational wave function based on the Bethe ansatz solution is newly proposed, where the spin-charge separation is realized, and a long-range correlation factor of Jastrow-type is included. In most regions of the phase diagram, this wave function provides an excellent description of the ground-state properties characterized as a Tomonaga-Luttinger liquid; Both of the amplitude and exponent of correlation functions are correctly reproduced. For the spin-gap phase, another trial state of correlated singlet pairs with a Jastrow factor is introduced. This wave function shows generalized Luther-Emery liquid behavior, exhibiting enhanced superconducting correlations and exponential decay of the spin correlation function. Using these two variational wave functions, the whole phase diagram is determined. In addition, relations between the correlation exponent and variational parameters in the trial functions are derived.Comment: REVTeX 3.0, 27 pages. 7 figures available upon request ([email protected]). To be published in Phys. Rev. B 5

    From antiferromagnetism to d-wave superconductivity in the 2D t-J model

    Full text link
    We have found that the two dimensional t-J model, for the physical parameter range J/t = 0.4 reproduces the main experimental qualitative features of High-Tc copper oxide superconductors: d-wave superconducting correlations are strongly enhanced upon small doping and clear evidence of off diagonal long range order is found at the optimal doping \delta ~ 0.15. On the other hand antiferromagnetic long range order, clearly present at zero hole doping, is suppressed at small hole density with clear absence of antiferromagnetism at \delta >~ 0.1.Comment: 4 pages, 5 figure

    Pulsations driven by the Δ-mechanism in post-merger remnants: First results

    Get PDF
    Helium-rich subdwarfs are a rare subclass of hot subdwarf stars which constitute a small and inhomogeneous group showing varying degrees of helium enrichment. Only one star, LS IV Âș14 116 has been found to show multiperiodic luminosity variations. The variability of LS IV Âș14 116 has been explained as the consequence of nonradial g-mode oscillations, whose excitation is difficult to understand within the frame of the standard Îș-mechanism driving pulsations in sdBV stars. In a recent study, we have proposed that the pulsations of LS IV Âș14 116 might be driven through the Δ-mechanism acting in unstable He-burning zones in the interior of the star, that appear before the quiescent He-burning phase. One of the few accepted scenarios for the formation of He-rich subdwarfs is the merger of two He-core white dwarfs. As part of this project, we present a study of the Δ-mechanism in post-merger remnants, and discuss the results in the light of the pulsations exhibited by LS IV Âș14 116.Facultad de Ciencias AstronĂłmicas y GeofĂ­sica

    Virtual Effects of Split SUSY in Higgs Productions at Linear Colliders

    Full text link
    In split supersymmetry the gauginos and higgsinos are the only supersymmetric particles possibly accessible at foreseeable colliders like the CERN Large Hadron Collider (LHC) and the International Linear Collider (ILC). In order to account for the cosmic dark matter measured by WMAP, these gauginos and higgsinos are stringently constrained and could be explored at the colliders through their direct productions and/or virtual effects in some processes. The clean environment and high luminosity of the ILC render the virtual effects of percent level meaningful in unraveling the new physics effects. In this work we assume split supersymmetry and calculate the virtual effects of the WMAP-allowed gauginos and higgsinos in Higgs productions e+e- -> Z h and e+e- -> \nu_e \bar_\nu_e h through WW fusion at the ILC. We find that the production cross section of e+e- -> Zh can be altered by a few percent in some part of the WMAP-allowed parameter space, while the correction to the WW-fusion process e+e- -> \nu_e \bar_\nu_e h is below 1%. Such virtual effects are correlated with the cross sections of chargino pair productions and can offer complementary information in probing split supersymmetry at the colliders.Comment: more discussions added (7 pages, 10 figs

    Is DsJ+(2632)D^{+}_{sJ}(2632) the first radial excitation of Ds∗(2112)D_{s}^{*}(2112)?

    Full text link
    We present a quantitative analysis of the DsJ+(2632)D^{+}_{sJ}(2632) observed by SELEX mainly focusing on the assumption that DsJ+(2632)D^{+}_{sJ}(2632) is the first radial excitation of the 1−1^{-} ground state Ds∗(2112)D^{*}_{s}(2112). By solving the instantaneous Bethe-Salpeter equation, we obtain the mass 2658±152658\pm 15 MeV for the first excited state, which is about 26 MeV heavier than the experimental value 2632±1.72632\pm 1.7 MeV. By means of PCAC and low-energy theorem we calculate the transition matrix elements and obtain the decay widths: Γ(DsJ+→Ds+η)=4.07±0.34\Gamma(D^{+}_{sJ}\to D^{+}_s\eta)=4.07\pm 0.34 MeV, Γ(DsJ+→D0K+)≃Γ(Γ(DsJ+→D+K0)=8.9±1.2\Gamma(D^{+}_{sJ}\to D^{0}K^{+}) \simeq \Gamma(\Gamma(D^{+}_{sJ}\to D^{+}K^{0})=8.9\pm 1.2 MeV, and the ratio Γ(DsJ+→D0K+)/Γ(DsJ+→Ds+η)=2.2±0.2\Gamma(D^{+}_{sJ}\to D^{0}K^{+})/\Gamma(D^{+}_{sJ}\to D^{+}_{s}\eta)=2.2\pm 0.2 as well. This ratio is quite different from the SELEX data 0.14±0.060.14\pm 0.06. The summed decay width of those three channels is approximately 21.7 MeV, already larger than the observed bound for the full width (≀17\leq 17 MeV). Furthermore, assuming DsJ+(2632)D_{sJ}^+(2632) is 1−1^{-} state, we also explore the possibility of S−DS-D wave mixing to explain the SELEX observation. Based on our analysis, we suspect that it is too early to conclude that DsJ+(2632)D^{+}_{sJ}(2632) is the first radial excitation of the 1−1^{-} ground state Ds∗(2112)D^{*}_{s}(2112). More precise measurements of the relative ratios and the total decay width are urgently required especially for S−DS-D wave mixing.Comment: 12 pages, 8 figure
    • 

    corecore