13,111 research outputs found

    Dynamical control of two-level system's decay and long time freezing

    Full text link
    We investigate with exact numerical calculation coherent control of a two-level quantum system's decay by subjecting the two-level system to many periodic ideal 2π2\pi phase modulation pulses. For three spectrum intensities (Gaussian, Lorentzian, and exponential), we find both suppression and acceleration of the decay of the two-level system, depending on difference between the spectrum peak position and the eigen frequency of the two-level system. Most interestingly, the decay of the two-level system freezes after many control pulses if the pulse delay is short. The decay freezing value is half of the decay in the first pulse delay.Comment: 6 pages, 6 figures, published in Phys. Rev.

    Ion exchange phase transitions in "doped" water--filled channels

    Full text link
    Ion transport through narrow water--filled channels is impeded by a high electrostatic barrier. The latter originates from the large ratio of the dielectric constants of the water and a surrounding media. We show that ``doping'', i.e. immobile charges attached to the walls of the channel, substantially reduces the barrier. This explains why most of the biological ion channels are ``doped''. We show that at rather generic conditions the channels may undergo ion exchange phase transitions (typically of the first order). Upon such a transition a finite latent concentration of ions may either enter or leave the channel, or be exchanged between the ions of different valences. We discuss possible implications of these transitions for the Ca-vs.-Na selectivity of biological Ca channels. We also show that transport of divalent Ca ions is assisted by their fractionalization into two separate excitations.Comment: 16 pages, 27 figure

    Sublattice addressing and spin-dependent motion of atoms in a double-well lattice

    Full text link
    We load atoms into every site of an optical lattice and selectively spin flip atoms in a sublattice consisting of every other site. These selected atoms are separated from their unselected neighbors by less than an optical wavelength. We also show spin-dependent transport, where atomic wave packets are coherently separated into adjacent sites according to their internal state. These tools should be useful for quantum information processing and quantum simulation of lattice models with neutral atoms

    The Observed Growth of Massive Galaxy Clusters II: X-ray Scaling Relations

    Full text link
    (Abridged) This is the second in a series of papers in which we derive simultaneous constraints on cosmology and X-ray scaling relations using observations of massive, X-ray flux-selected galaxy clusters. The data set consists of 238 clusters drawn from the ROSAT All-Sky Survey with 0.1-2.4 keV luminosities >2.5e44 erg/second, and incorporates extensive follow-up observations using the Chandra X-ray Observatory. Our analysis accounts self-consistently for all selection effects, covariances and systematic uncertainties. Here we describe the reduction of the follow-up X-ray observations, present results on the cluster scaling relations, and discuss their implications. Our constraints on the luminosity-mass and temperature-mass relations, measured within r_500, lead to three important results. First, the data support the conclusion that excess heating of the intracluster medium has altered its thermodynamic state from that expected in a simple, gravitationally dominated system; however, this excess heating is primarily limited to the central regions of clusters (r<0.15r_500). Second, the intrinsic scatter in the center-excised luminosity-mass relation is remarkably small, being undetected at the <10% level in current data; for the hot, massive clusters under investigation, this scatter is smaller than in either the temperature-mass or Y_X-mass relations (10-15%). Third, the evolution with redshift of the scaling relations is consistent with the predictions of simple, self-similar models of gravitational collapse, indicating that the mechanism responsible for heating the central regions of clusters was in operation before redshift 0.5 (the limit of our data) and that its effects on global cluster properties have not evolved strongly since then.Comment: 25 pages, 7 figures, 14 tables. v3: final version (typographic corrections). Results can be downloaded at https://www.stanford.edu/group/xoc/papers/xlf2009.htm

    Excitation of EMIC waves detected by the Van Allen Probes on 28 April 2013

    Get PDF
    Abstract We report the wave observations, associated plasma measurements, and linear theory testing of electromagnetic ion cyclotron (EMIC) wave events observed by the Van Allen Probes on 28 April 2013. The wave events are detected in their generation regions as three individual events in two consecutive orbits of Van Allen Probe-A, while the other spacecraft, B, does not detect any significant EMIC wave activity during this period. Three overlapping H+ populations are observed around the plasmapause when the waves are excited. The difference between the observational EMIC wave growth parameter (Eh) and the theoretical EMIC instability parameter (Sh) is significantly raised, on average, to 0.10 ± 0.01, 0.15 ± 0.02, and 0.07 ± 0.02 during the three wave events, respectively. On Van Allen Probe-B, this difference never exceeds 0. Compared to linear theory (Eh\u3eSh), the waves are only excited for elevated thresholds

    A parsec-scale outflow from the luminous YSO IRAS 17527-2439

    Full text link
    Imaging observations of IRAS 17527-2439 are obtained in the near-IR JHK photometric bands and in a narrow-band filter centred at the wavelength of the H_2 1-0 S(1) line. The continuum-subtracted H_2 image is used to identify outflows. The data obtained in this study are used in conjunction with Spitzer, AKARI, and IRAS data. A parsec-scale bipolar outflow is discovered in our H_2 line image, which is supported by the detection in the archival Spitzer images. The H_2 image exhibits signs of precession of the main jet and shows tentative evidence for a second outflow. These suggest the possibility of a companion to the outflow source. There is a strong component of continuum emission in the direction of the outflow, which supports the idea that the outflow cavity provides a path for radiation to escape, thereby reducing the radiation pressure on the accreted matter. The bulk of the emission observed close to the outflow in the WFCAM and Spitzer bands is rotated counter clockwise with respect to the outflow traced in H_2, which may be due to precession. The YSO driving the outflow is identified in the Spitzer images. The spectral energy distribution (SED) of the YSO is studied using available radiative transfer models. A model fit to the SED of the central source tells us that the YSO has a mass of 12.23 M_sun and that it is in an early stage of evolution.Comment: 6 Pages, 5 figures, accepted for publication by Astronomy and Astrophysic

    Energy gap in superconducting fullerides: optical and tunneling studies

    Full text link
    Tunneling and optical transmission studies have been performed on superconducting samples of Rb3C60. At temperatures much below the superconducting transition temperature Tc the energy gap is 2 Delta=5.2 +- 0.2meV, corresponding to 2 Delta/kB Tc = 4.2. The low temperature density of states, and the temperature dependence of the optical conductivity resembles the BCS behavior, although there is an enhanced ``normal state" contribution. The results indicate that this fulleride material is an s-wave superconductor, but the superconductivity cannot be described in the weak coupling limit.Comment: RevTex file with four .EPS figures. Prints to four pages. Also available at http://buckminster.physics.sunysb.edu/papers/pubrece.htm

    In-Situ Infrared Transmission Study of Rb- and K-Doped Fullerenes

    Full text link
    We have measured the four IR active C60C_{60} molecular vibrations in MxC60M_{x}C_{60} (M=K,Rb)(M = K, Rb) as a function of doping xx. We observe discontinuous changes in the vibrational spectra showing four distinct phases (presumably x=0,3,4x = 0, 3, 4, and 6). The 1427cm11427cm^{-1} and 576cm1576cm^{-1} modes show the largest changes shifting downward in frequency in four steps as the doping increases. Several new very weak modes are visible in the x=6x=6 phase and are possibly Raman modes becoming weakly optically active. We present quantitative fits of the data and calculate the electron-phonon coupling of the 1427cm11427cm^{-1} IR mode.Comment: 3 pages, Figure 1 included, 3 more figures available by request. REVTEX v3.0 IRC60DO
    corecore