113 research outputs found

    Diverse rupture processes in the 2015 Peru deep earthquake doublet

    Get PDF
    International audienceEarthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes

    Electrochemical Capture of CO\u3csub\u3e2\u3c/sub\u3e from Natural Gas using a High-Temperature Ceramic-Carbonate Membrane

    Get PDF
    This study reports the first investigation of using a ceramic-carbonate dual-phase membrane to electrochemically separate CO2 from a simulated natural gas. The CO2 permeation flux density was systematically studied as a function of temperature, CO2 partial pressure and time. As expected, the flux density was observed to increase with temperature and CO2 partial pressure. Long-term stability test showed that flux density experienced an initial performance-improving “break-in” period followed by a slow decay. Post-test microstructural analysis suggested that a gradual loss of carbonate during the test could be the cause of the flux-time behavior observed

    Comparison of photosynthetic responses between haptophyte Phaeocystis globosa and diatom Skeletonema costatum under phosphorus limitation

    Get PDF
    The diatom Skeletonema costatum and the haptophyte Phaeocystis globosa often form blooms in the coastal waters of the South China Sea. Skeletonemacostatum commonly dominates in nutrient enrichment coastal waters, whereas P. globosa starts flourishing after the diatom blooms when phosphorus (P) is limited. Therefore, P limitation was proposed to be a critical factor affecting diatom–haptophyte transition. To elucidate the tolerance to P limitation in P. globosa compared with S. costatum, the effect of P limitation on their photosystem II (PSII) performance was investigated and their photosynthesis acclimation strategies in response to P limitation were evaluated. P limitation did not affect the growth of P. globosa over 7 days but decreased it for S. costatum. Correspondingly, the PSII activity of S. costatum was significantly inhibited by P limitation. The decline in PSII activity in S. costatum under P limitation was associated with the impairment of the oxygen-evolving complex (the donor side of PSII), the hindrance of electron transport from QA− to QB (the acceptor side of PSII), and the inhibition of electron transport to photosystem I (PSI). The 100% decrease in D1 protein level of S. costatum after P limitation for 6 days and PsbO protein level after 2 days of P limitation were attributed to its enhanced photoinhibition. In contrast, P. globosa maintained its photosynthetic activity with minor impairment of the function of PSII. With accelerated PSII repair and highly increased non-photochemical quenching (NPQ), P. globosa can avoid serious PSII damage under P limitation. On the contrary, S. costatum decreased its D1 restoration under P limitation, and the maximum NPQ value in S. costatum was only one-sixth of that in P. globosa. The present work provides extensive evidence that a close interaction exists between the tolerance to P limitation and photosynthetic responses of S. costatum and P. globosa

    Enhancing the resilience of the power system to accommodate the construction of the new power system: key technologies and challenges

    Get PDF
    The increasingly frequent extreme events pose a serious threat to the resilience of the power system. At the same time, the power grid is transforming into a new type of clean and low-carbon power system due to severe environmental issues. The system shows strong randomness with a high proportion of renewable energy, which has increased the difficulty of maintaining the safe and stable operation of the power system. Therefore, it is urgent to improve the resilience of the new power system. This paper first elaborates on the concept of power system resilience, listing the characteristics of new power systems and their impact on grid resilience. Secondly, the evaluation methods for resilient power grids are classified into two categories, and measures to improve the resilience of the new power system are reviewed from various stages of disasters. Then, the critical technologies for improving the resilience of the new power system are summarized. Finally, the prospective research directions for new power system resilience enhancement are expounded

    Diagnostic value of qualitative and quantitative parameters of contrast-enhanced ultrasound for differentiating differentiated thyroid carcinomas from benign nodules

    Get PDF
    ObjectiveTo explore the diagnostic value of contrast-enhanced ultrasound (CEUS) of qualitative and quantitative parameters for differentiating differentiated thyroid cancers from benign nodules.MethodA total of 290 thyroid nodules that were pathologically confirmed were enrolled in this study. The univariate analysis was performed for the clinical characteristics and CEUS qualitative and quantitative parameters of the inside and peripheral zone of nodules, including age, gender, nodule size, intensity of enhancement, homogeneity, wash-in and wash-out patterns, margin after CEUS, ring enhancement, peak intensity, sharpness, time to peak(TP), and area under the curve(AUC), and the meaningful indicators in the single-factor analysis were further included in multivariate logistic regression analysis.ResultsMultivariate analysis showed that there were significant differences in age (p=0.031), nodule size (p<0.001), heterogeneous enhancement (p<0.001), hypo-enhancement (p=0.001), unclear margin after CEUS(p=0.007), inside peak (p<0.001), and outside sharpness(p<0.001) between benign and malignant nodules. However, there were no significant differences in gender, ring enhancement, wash-in, wash-out, outside TP, outside AUC between benign and malignant thyroid nodules (P>0.05, for all).ConclusionCEUS might be useful in the differential diagnosis of differentiated thyroid cancers and benign nodules, which could provide a certain basis for clinical treatment

    Computational Image Analysis Identifies Histopathological Image Features Associated With Somatic Mutations and Patient Survival in Gastric Adenocarcinoma

    Get PDF
    Computational analysis of histopathological images can identify sub-visual objective image features that may not be visually distinguishable by human eyes, and hence provides better modeling of disease phenotypes. This study aims to investigate whether specific image features are associated with somatic mutations and patient survival in gastric adenocarcinoma (sample size = 310). An automated image analysis pipeline was developed to extract quantitative morphological features from H&E stained whole-slide images. We found that four frequently somatically mutated genes (TP53, ARID1A, OBSCN, and PIK3CA) were significantly associated with tumor morphological changes. A prognostic model built on the image features significantly stratified patients into low-risk and high-risk groups (log-rank test p-value = 2.6e-4). Multivariable Cox regression showed the model predicted risk index was an additional prognostic factor besides tumor grade and stage. Gene ontology enrichment analysis showed that the genes whose expressions mostly correlated with the contributing features in the prognostic model were enriched on biological processes such as cell cycle and muscle contraction. These results demonstrate that histopathological image features can reflect underlying somatic mutations and identify high-risk patients that may benefit from more precise treatment regimens. Both the image features and pipeline are highly interpretable to enable translational applications

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Maternal gut microbiota in the health of mothers and offspring: from the perspective of immunology

    No full text
    Due to the physiological alteration during pregnancy, maternal gut microbiota changes following the metabolic processes. Recent studies have revealed that maternal gut microbiota is closely associated with the immune microenvironment in utero during pregnancy and plays a vital role in specific pregnancy complications, including preeclampsia, gestational diabetes, preterm birth and recurrent miscarriages. Some other evidence has also shown that aberrant maternal gut microbiota increases the risk of various diseases in the offspring, such as allergic and neurodevelopmental disorders, through the immune alignment between mother and fetus and the possible intrauterine microbiota. Probiotics and the high-fiber diet are effective inventions to prevent mothers and fetuses from diseases. In this review, we summarize the role of maternal gut microbiota in the development of pregnancy complications and the health condition of future generations from the perspective of immunology, which may provide new therapeutic strategies for the health management of mothers and offspring
    corecore