308 research outputs found

    Mitochondrial complex III Rieske Fe-S protein processing and assembly.

    Get PDF
    Regulation of the mitochondrial respiratory chain biogenesis is a matter of great interest because of its implications for mitochondrial disease. One of the mitochondrial disease genes recently discovered associated to encephalopathy and mitochondrial complex III (cIII) deficiency is TTC19. Our study of TTC19-deficient human and mouse models, has led us to propose a post-assembly quality control role or 'husbandry' function for this factor that is linked to Rieske Fe-S protein (UQCRFS1). UQCRFS1 is the last incorporated cIII subunit, and its presence is essential for enzymatic activity. During UQCRFS1 assembly, the precursor is cleaved and its N-terminal part remains bound to the complex, between the two core subunits (UQCRC1 and UQCRC2). In the absence of TTC19 there is a prominent accumulation of these UQCRFS1-derived N-terminal fragments that proved to be detrimental for cIII function. In this article we will discuss some ideas around the UQCRFS1 processing and assembly and its importance for the regulation of cIII activity and biogenesis

    RCC1L (WBSCR16) isoforms coordinate mitochondrial ribosome assembly through their interaction with GTPases.

    Get PDF
    Mitochondrial translation defects can be due to mutations affecting mitochondrial- or nuclear-encoded components. The number of known nuclear genes involved in mitochondrial translation has significantly increased in the past years. RCC1L (WBSCR16), a putative GDP/GTP exchange factor, has recently been described to interact with the mitochondrial large ribosomal subunit. In humans, three different RCC1L isoforms have been identified that originate from alternative splicing but share the same N-terminus, RCC1LV1, RCC1LV2 and RCC1LV3. All three isoforms were exclusively localized to mitochondria, interacted with its inner membrane and could associate with homopolymeric oligos to different extent. Mitochondrial immunoprecipitation experiments showed that RCC1LV1 and RCC1LV3 associated with the mitochondrial large and small ribosomal subunit, respectively, while no significant association was observed for RCC1LV2. Overexpression and silencing of RCC1LV1 or RCC1LV3 led to mitoribosome biogenesis defects that resulted in decreased translation. Indeed, significant changes in steady-state levels and distribution on isokinetic sucrose gradients were detected not only for mitoribosome proteins but also for GTPases, (GTPBP10, ERAL1 and C4orf14), and pseudouridylation proteins, (TRUB2, RPUSD3 and RPUSD4). All in all, our data suggest that RCC1L is essential for mitochondrial function and that the coordination of at least two isoforms is essential for proper ribosomal assembly

    Genetic variation in the methylenetetrahydrofolate reductase gene, MTHFR, does not alter the risk of visual failure in Leber’s hereditary optic neuropathy

    Get PDF
    Focal neurodegeneration of the optic nerve in Leber hereditary optic neuropathy (LHON) is primarily due to a maternally inherited mitochondrial DNA mutation. However, the markedly reduced penetrance of LHON and segregation pattern of visual failure within families implicates an interacting nuclear genetic locus modulating the phenotype. Folate deficiency is known to cause bilateral optic neuropathy, and defects of folate metabolism have been associated with nonarteritic ischemic optic neuropathy

    Genetic and chemical rescue of the Saccharomyces cerevisiae phenotype induced by mitochondrial DNA polymerase mutations associated with progressive external ophthalmoplegia in humans

    Get PDF
    The human POLG gene encodes the catalytic subunit of mitochondrial DNA polymerase Îł (pol Îł). Mutations in pol Îł are associated with a spectrum of disease phenotypes including autosomal dominant and recessive forms of progressive external ophthalmoplegia, spino-cerebellar ataxia and epilepsy, and Alpers-Huttenlocher hepatocerebral poliodystrophy. Multiple deletions, or depletion of mtDNA in affected tissues, are the molecular hallmarks of pol Îł mutations. To shed light on the pathogenic mechanisms leading to these phenotypes, we have introduced in MIP1, the yeast homologue of POLG, two mutations equivalent to the human Y955C and G268A mutations, which are associated with dominant and recessive PEO, respectively. Both mutations induced the generation of petite colonies, carrying either rearranged (ρ−) or no (ρ0) mtDNA. Mutations in genes that control the mitochondrial supply of deoxynucleotides (dNTP) affect the mtDNA integrity in both humans and yeast. To test whether the manipulation of the dNTP pool can modify the effects of pol Îł mutations in yeast, we have overexpressed a dNTP checkpoint enzyme, ribonucleotide reductase, RNR1, or deleted its inhibitor, SML1. In both mutant strains, the petite mutability was dramatically reduced. The same result was obtained by exposing the mutant strains to dihydrolipoic acid, an anti-oxidant agent. Therefore, an increase of the mitochondrial dNTP pool and/or a decrease of reactive oxygen species can prevent the mtDNA damage induced by pol Îł mutations in yeast and, possibly, in human

    Mutations in TIMM50 compromise cell survival in OxPhos-dependent metabolic conditions.

    Get PDF
    TIMM50 is an essential component of the TIM23 complex, the mitochondrial inner membrane machinery that imports cytosolic proteins containing a mitochondrial targeting presequence into the mitochondrial inner compartment. Whole exome sequencing (WES) identified compound heterozygous pathogenic mutations in TIMM50 in an infant patient with rapidly progressive, severe encephalopathy. Patient fibroblasts presented low levels of TIMM50 and other components of the TIM23 complex, lower mitochondrial membrane potential, and impaired TIM23-dependent protein import. As a consequence, steady-state levels of several components of mitochondrial respiratory chain were decreased, resulting in decreased respiration and increased ROS production. Growth of patient fibroblasts in galactose shifted energy production metabolism toward oxidative phosphorylation (OxPhos), producing an apparent improvement in most of the above features but also increased apoptosis. Complementation of patient fibroblasts with TIMM50 improved or restored these features to control levels. Moreover, RNASEH1 and ISCU mutant fibroblasts only shared a few of these features with TIMM50 mutant fibroblasts. Our results indicate that mutations in TIMM50 cause multiple mitochondrial bioenergetic dysfunction and that functional TIMM50 is essential for cell survival in OxPhos-dependent conditions

    Role of pitrm1 in mitochondrial dysfunction and neurodegeneration

    Get PDF
    Mounting evidence shows a link between mitochondrial dysfunction and neurodegenerative disorders, including Alzheimer Disease. Increased oxidative stress, defective mitodynamics, and impaired oxidative phosphorylation leading to decreased ATP production, can determine synaptic dysfunction, apoptosis, and neurodegeneration. Furthermore, mitochondrial proteostasis and the protease-mediated quality control system, carrying out degradation of potentially toxic peptides and misfolded or damaged proteins inside mitochondria, are emerging as potential pathogenetic mechanisms. The enzyme pitrilysin metallopeptidase 1 (PITRM1) is a key player in these processes; it is responsible for degrading mitochondrial targeting sequences that are cleaved off from the imported precursor proteins and for digesting a mitochondrial fraction of amyloid beta (AÎČ). In this review, we present current evidence obtained from patients with PITRM1 mutations, as well as the different cellular and animal models of PITRM1 deficiency, which points toward PITRM1 as a possible driving factor of several neurodegenerative conditions. Finally, we point out the prospect of new diagnostic and therapeutic approaches.publishedVersio
    • 

    corecore