12 research outputs found

    Preliminary characterization of columnar aerosol properties (AOD-AE) at the Saharan Tamanrasset (Algeria) station [Póster]

    Get PDF
    Póster presentado en: 37th Annual European Meeting on Atmospheric Studies by Optical Methods, celebrado en 2010 en Valladolid.Financial supports from the Spanish MICIIN (ref.CGL2008-05939-CO3-00/CLIandCGL2009-09740) and from the GR-220 Project of the Junta de Castilla y León are gratefully acknowledged

    Caracterización preliminar de las propiedades del aerosol en columna (EOA-EA) en la estación sahariana de Tamanrasset (Argelia)

    Get PDF
    A Cimel sun photometer has been in operation at Tamanrasset station since late 2006. In this study, more than two years of aerosol measurements have been analyzed from October 2006 to January 2009. Two parameters, aerosol optical depth (AOD) and Ångström exponent (AE), have been used for this preliminar characterization. At this station, the mean AOD is 0.25±0.15 and the mean AE is 0.48±0.23. Both time series data show a clear seasonal cycle. A dry-cool season (fall and winter time), characterized by low AOD and high AE values, and a wet-hot season (in spring-summer), with strong and frequent mineral dust storms, giving high AOD and low AE values, are observed at Tamanrasset. Both, AOD and AE values show the behaviour of a station where desert mineral dust is the prevailing aerosol defining the characteristic of the site. However a significant number of episodes with AE values around 1 together with AOD greater than 0.2 have been found, what suggests the presence of pollution derived aerosols.Financial supports from the Spanish MICIIN (ref. CGL2008-05939-CO3-00/CLI and CGL 2009-09740) and from the GR-220 Project of the Junta de Castilla y León are gratefully acknowledged

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Get PDF
    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ∼0.09 at 440 nm, AE ∼0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ∼0.28, AOD ∼0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Get PDF
    More than 2 years of columnar atmospheric aerosol measurements (2006–2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.The AERONET sun photometer at Tamanrasset has been calibrated within AERONET-EUROPE TNA supported by the PHOTONS and RIMA networks and partially financed by the European Community – Research Infrastructure Action under the Seventh Framework Programme (FP7/2007-2013) “Capacities” specific programme for Integrating Activities, ACTRIS grant agreement no. 262254. Financial support from the Spanish MINECO (projects CGL2011-23413, CGL2012-33576 and CGL2012-37505) is also gratefully acknowledged. J. M. Baldasano and S. Basart acknowledge the Supercomputación y eCiencia project (CSD2007-0050) from the Consolider-Ingenio 2010 and Severo Ochoa (SEV-2011-00067) programs of the Spanish Government

    Measurement and control of wheel slip in traction

    Get PDF
    SIGLEAvailable from British Library Lending Division - LD:D57655/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    No full text
    More than 2 years of columnar atmospheric aerosol measurements (2006-2009) at the Tamanrasset site (22.79 degrees N, 5.53 degrees E, 1377 ma.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Angstrom exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD similar to 0.09 at 440 nm, AE similar to 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE similar to 0.28, AOD similar to 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Full text link
    More than 2 years of columnar atmospheric aerosol measurements (2006–2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.The AERONET sun photometer at Tamanrasset has been calibrated within AERONET-EUROPE TNA supported by the PHOTONS and RIMA networks and partially financed by the European Community – Research Infrastructure Action under the Seventh Framework Programme (FP7/2007-2013) “Capacities” specific programme for Integrating Activities, ACTRIS grant agreement no. 262254. Financial support from the Spanish MINECO (projects CGL2011-23413, CGL2012-33576 and CGL2012-37505) is also gratefully acknowledged. J. M. Baldasano and S. Basart acknowledge the Supercomputación y eCiencia project (CSD2007-0050) from the Consolider-Ingenio 2010 and Severo Ochoa (SEV-2011-00067) programs of the Spanish Government

    Aerosol characterization at the Saharan AERONET site Tamanrasset

    Get PDF
    More than 2 years of columnar atmospheric aerosol measurements (2006–2009) at the Tamanrasset site (22.79° N, 5.53° E, 1377 m a.s.l.), in the heart of the Sahara, are analysed. Aerosol Robotic Network (AERONET) level 2.0 data were used. The KCICLO (K is the name of a constant and ciclo means cycle in Spanish) method was applied to a part of the level 1.5 data series to improve the quality of the results. The annual variability of aerosol optical depth (AOD) and Ångström exponent (AE) has been found to be strongly linked to the convective boundary layer (CBL) thermodynamic features. The dry-cool season (autumn and winter) is characterized by a shallow CBL and very low mean turbidity (AOD ~ 0.09 at 440 nm, AE ~ 0.62). The wet-hot season (spring and summer) is dominated by high turbidity of coarse dust particles (AE ~ 0.28, AOD ~ 0.39 at 440 nm) and a deep CBL. The aerosol-type characterization shows desert mineral dust as the prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from the industrial areas in Libya and Algeria. The concentration weighted trajectory (CWT) source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.The AERONET sun photometer at Tamanrasset has been calibrated within AERONET-EUROPE TNA supported by the PHOTONS and RIMA networks and partially financed by the European Community – Research Infrastructure Action under the Seventh Framework Programme (FP7/2007-2013) “Capacities” specific programme for Integrating Activities, ACTRIS grant agreement no. 262254.Financial support from the Spanish MINECO (projects CGL2011-23413, CGL2012-33576 and CGL2012-37505). e Supercomputación y eCiencia project (CSD2007-0050) from the Consolider-Ingenio 2010 and Severo Ochoa (SEV-2011-00067) programs of the Spanish Government.5.053 JCR (2014) Q1, 3/77 Meteorology and atmospheric sciencesUE
    corecore