11 research outputs found

    Efficient and compact sol-gel TiOâ‚‚ thermo-optic microring resonator modulator

    No full text
    Thermo-optic (TO) modulators play an increasingly important role in wavelength routers, lidar, optical computing, and other reconfigurable photonic systems. Highly efficient TO tunable microring resonators (MRRs) were first demonstrated based on a sol-gel TiOâ‚‚ platform in the 1310-nm waveband owing to the synergistic effect between the TiOâ‚‚ core and SU-8 cladding with both the negative thermo-optical coefficients. The MRR modulator with SU-8 polymer as the top cladding layer exhibits a thermal tuning efficiency of 33.0 pm/mW, which is more than 14 times higher than that with silica top cladding. Its rise/fall times of 9.4 us/24 us and a PĎ€ power of 7.22 mW were achieved, indicating a relatively high TO modulator figure of merit among noncrystalline material platforms allowing monolithic integration on different substrates. These results yield a strong promise for applying the sol-gel TiOâ‚‚ platform in photonic integrated circuits and suggest a new angle of view to design compact and efficient TO modulators in wearable devices, visible/infrared communication, and biophotonic applications

    Transcriptome Analysis of JA Signal Transduction, Transcription Factors, and Monoterpene Biosynthesis Pathway in Response to Methyl Jasmonate Elicitation in Mentha canadensis L.

    No full text
    Mentha canadensis L. has important economic value for its abundance in essential oils. Menthol is the main component of M. canadensis essential oils, which is certainly the best-known monoterpene for its simple structure and wide applications. However, the regulation of menthol biosynthesis remains elusive in M. canadensis. In this study, transcriptome sequencing of M. canadensis with MeJA treatment was applied to illustrate the transcriptional regulation of plant secondary metabolites, especially menthol biosynthesis. Six sequencing libraries were constructed including three replicates for both control check (CK) and methyl jasmonate (MeJA) treatment and at least 8 Gb clean bases was produced for each library. After assembly, a total of 81,843 unigenes were obtained with an average length of 724 bp. Functional annotation indicated that 64.55% of unigenes could be annotated in at least one database. Additionally, 4430 differentially expressed genes (DEGs) with 2383 up-regulated and 2047 down-regulated transcripts were identified under MeJA treatment. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment indicated that “Monoterpenoid biosynthesis” was one of the most significantly enriched pathways in metabolism. Subsequently, DEGs involved in JA signal transduction, transcription factors, and monoterpene biosynthesis were analyzed. 9 orthologous genes involved in menthol biosynthesis were also identified. This is the first report of a transcriptome study of M. canadensis and will facilitate the studies of monoterpene biosynthesis in the genus Mentha

    Efficient and compact sol-gel TiOâ‚‚ thermo-optic microring resonator modulator

    No full text
    Thermo-optic (TO) modulators play an increasingly important role in wavelength routers, lidar, optical computing, and other reconfigurable photonic systems. Highly efficient TO tunable microring resonators (MRRs) were first demonstrated based on a sol-gel TiOâ‚‚ platform in the 1310-nm waveband owing to the synergistic effect between the TiOâ‚‚ core and SU-8 cladding with both the negative thermo-optical coefficients. The MRR modulator with SU-8 polymer as the top cladding layer exhibits a thermal tuning efficiency of 33.0 pm/mW, which is more than 14 times higher than that with silica top cladding. Its rise/fall times of 9.4 us/24 us and a PĎ€ power of 7.22 mW were achieved, indicating a relatively high TO modulator figure of merit among noncrystalline material platforms allowing monolithic integration on different substrates. These results yield a strong promise for applying the sol-gel TiOâ‚‚ platform in photonic integrated circuits and suggest a new angle of view to design compact and efficient TO modulators in wearable devices, visible/infrared communication, and biophotonic applications

    Efficient and compact sol-gel TiOâ‚‚ thermo-optic microring resonator modulator

    No full text
    Thermo-optic (TO) modulators play an increasingly important role in wavelength routers, lidar, optical computing, and other reconfigurable photonic systems. Highly efficient TO tunable microring resonators (MRRs) were first demonstrated based on a sol-gel TiOâ‚‚ platform in the 1310-nm waveband owing to the synergistic effect between the TiOâ‚‚ core and SU-8 cladding with both the negative thermo-optical coefficients. The MRR modulator with SU-8 polymer as the top cladding layer exhibits a thermal tuning efficiency of 33.0 pm/mW, which is more than 14 times higher than that with silica top cladding. Its rise/fall times of 9.4 us/24 us and a PĎ€ power of 7.22 mW were achieved, indicating a relatively high TO modulator figure of merit among noncrystalline material platforms allowing monolithic integration on different substrates. These results yield a strong promise for applying the sol-gel TiOâ‚‚ platform in photonic integrated circuits and suggest a new angle of view to design compact and efficient TO modulators in wearable devices, visible/infrared communication, and biophotonic applications

    Glabridin Ameliorates Alcohol-Caused Liver Damage by Reducing Oxidative Stress and Inflammation via p38 MAPK/Nrf2/NF-ÎşB Pathway

    No full text
    Licorice is a traditional and versatile herbal medicine and food. Glabridin (Gla) is a kind of isoflavone extracted from the licorice root, which has anti-obesity, anti-atherosclerotic, and antioxidative effects. Alcoholic liver disease (ALD) is a widespread liver disease induced by chronic alcohol consumption. However, studies demonstrating the effect of Gla on ALD are rare. The research explored the positive effect of Gla in C57BL/6J mice fed by the Lieber–DeCarli ethanol mice diet and HepG2 cells treated with ethanol. Gla alleviated ethanol-induced liver injury, including reducing liver vacuolation and lipid accumulation. The serum levels of inflammatory cytokines were decreased in the Gla-treated mice. The reactive oxygen species and apoptosis levels were attenuated and antioxidant enzyme activity levels were restored in ethanol-induced mice by Gla treatment. In vitro, Gla reduced ethanol-induced cytotoxicity, nuclear factor kappa B (NF-κB) nuclear translocation, and enhanced nuclear factor (erythroid-derived 2)-like 2 (Nrf2) nuclear translocation. Anisomycin (an agonist of p38 MAPK) eliminated the positive role of Gla on ethanol-caused oxidative stress and inflammation. On the whole, Gla can alleviate alcoholic liver damage via the p38 MAPK/Nrf2/NF-κB pathway and may be used as a novel health product or drug to potentially alleviate ALD

    Compound Danshen Dripping Pill inhibits hypercholesterolemia/atherosclerosis-induced heart failure in ApoE and LDLR dual deficient mice via multiple mechanisms

    No full text
    Heart failure is the leading cause of death worldwide. Compound Danshen Dripping Pill (CDDP) or CDDP combined with simvastatin has been widely used to treat patients with myocardial infarction and other cardiovascular diseases in China. However, the effect of CDDP on hypercholesterolemia/atherosclerosis-induced heart failure is unknown. We constructed a new model of heart failure induced by hypercholesterolemia/atherosclerosis in apolipoprotein E (ApoE) and LDL receptor (LDLR) dual deficient (ApoE–/–LDLR–/–) mice and investigated the effect of CDDP or CDDP plus a low dose of simvastatin on the heart failure. CDDP or CDDP plus a low dose of simvastatin inhibited heart injury by multiple actions including anti-myocardial dysfunction and anti-fibrosis. Mechanistically, both Wnt and lysine-specific demethylase 4A (KDM4A) pathways were significantly activated in mice with heart injury. Conversely, CDDP or CDDP plus a low dose of simvastatin inhibited Wnt pathway by markedly up-regulating expression of Wnt inhibitors. While the anti-inflammation and anti-oxidative stress by CDDP were achieved by inhibiting KDM4A expression and activity. In addition, CDDP attenuated simvastatin-induced myolysis in skeletal muscle. Taken together, our study suggests that CDDP or CDDP plus a low dose of simvastatin can be an effective therapy to reduce hypercholesterolemia/atherosclerosis-induced heart failure

    The draft genome of a diploid cotton <em>Gossypium raimondii</em>

    No full text
    We have sequenced and assembled a draft genome of G. raimondii, whose progenitor is the putative contributor of the D subgenome to the economically important fiber-producing cotton species Gossypium hirsutum and Gossypium barbadense. Over 73% of the assembled sequences were anchored on 13 G. raimondii chromosomes. The genome contains 40,976 protein-coding genes, with 92.2% of these further confirmed by transcriptome data. Evidence of the hexaploidization event shared by the eudicots as well as of a cotton-specific whole-genome duplication approximately 13-20 million years ago was observed. We identified 2,355 syntenic blocks in the G. raimondii genome, and we found that approximately 40% of the paralogous genes were present in more than 1 block, which suggests that this genome has undergone substantial chromosome rearrangement during its evolution. Cotton, and probably Theobroma cacao, are the only sequenced plant species that possess an authentic CDN1 gene family for gossypol biosynthesis, as revealed by phylogenetic analysis.Genetics &amp; HereditySCI(E)50ARTICLE101098-+4

    The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions

    Get PDF
    Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2x = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism
    corecore