51 research outputs found
Serotonergic Contributions to Human Brain Aggression Networks
Aggressive behavior is associated with dysfunctional frontolimbic emotion regulation circuits. Recent findings suggest serotonin as a primary transmitter for prefrontal amygdala control. However, the association between serotonin levels, amygdala regulation, and aggression is still a matter of debate. Neurobehavioral models furthermore suggest a possible mediating influence of the monoamine oxidase A gene (MAOA) on this brain-behavior relationship, with carriers of low expressing allele varieties being a risk group for aggression. In the present study, we investigated the influence of brain serotonin modulation and MAOA genotype on functional amygdala connectivity during aggressive behavior. Modulation of serotonergic neurotransmission with acute tryptophan depletion (ATD) and placebo were administered in a double-blind, cross-over design in 38 healthy male participants. Aggressive behavior was modeled in a violent video game during simultaneous assessment of brain activation with functional magnetic resonance imaging (fMRI). Trait aggression was measured with the Buss-Perry Aggression Questionnaire (BP-AQ), and MAOA genotypes were assessed from blood samples. Voxel-wise functional connectivity with anatomically defined amygdala was calculated from the functional data. Tryptophan depletion with ATD reduced aggression-specific amygdala connectivity with bilateral supramarginal gyrus. Moreover, ATD impact was associated with trait aggression and MAOA genotype in prefrontal cortex regions. In summary, serotonergic corticolimbic projections contribute to aggressive behavior. Genotype-specific vulnerability of frontolimbic projections may underlie the elevated risk in low expressing allele carriers
Acute tryptophan depletion Moja-De: a method to study central nervous serotonin function in children and adolescents
Serotonin (5-HT) is widely implicated as a key neurotransmitter relevant to a range of psychiatric disorders and psychological processes. The role of central nervous 5-HT function underlying these processes can be examined through serotonergic challenge methodologies. Acute tryptophan depletion (ATD) is a key challenge method whereby a diminished dietary intake of tryptophan—the amino acid precursor to brain 5-HT synthesis—results in temporary diminished central nervous 5-HT synthesis. While this particular methodology has been used in adult populations, it was only recently that modifications were made to enable the use of ATD in child and adolescent populations. Additionally, the Moja-De modification of the ATD challenge methodology has demonstrated benefits over other ATD techniques used previously. The aim of this protocol paper is to describe the ATD Moja-De methodology in detail, its benefits, as well as studies that have been conducted to validate the procedure in child and adolescent samples. The ATD Moja-De protocol provides a potential methodology for investigating the role of central nervous 5-HT
via
manipulation of brain tryptophan availability in human psychopathology from a developmental viewpoint
Effects of Acute Tryptophan Depletion on Brain Serotonin Function and Concentrations of Dopamine and Norepinephrine in C57BL/6J and BALB/cJ Mice
Acute tryptophan depletion (ATD) is a method of lowering brain serotonin (5-HT). Administration of large neutral amino acids (LNAA) limits the transport of endogenous tryptophan (TRP) across the blood brain barrier by competition with other LNAAs and subsequently decreases serotonergic neurotransmission. A recent discussion on the specificity and efficacy of the ATD paradigm for inhibition of central nervous 5-HT has arisen. Moreover, side effects such as vomiting and nausea after intake of amino acids (AA) still limit its use. ATD Moja-De is a revised mixture of AAs which is less nauseating than conventional protocols. It has been used in preliminary clinical studies but its effects on central 5-HT mechanisms and other neurotransmitter systems have not been validated in an animal model. We tested ATD Moja-De (TRP−) in two strains of mice: C57BL/6J, and BALB/cJ, which are reported to have impaired 5-HT synthesis and a more anxious phenotype relative to other strains of mice. ATD Moja-De lowered brain TRP, significantly decreased 5-HT synthesis as indexed by 5-HTP levels after decarboxlyase inhibition, and lowered 5-HT and 5-HIAA in both strains of mice, however more so in C57BL/6J than in BALB/cJ. Dopamine and its metabolites as well as norepinephrine were not affected. A balanced (TRP+) control mixture did not raise 5-HT or 5-HIAA. The present findings suggest that ATD Moja-De effectively and specifically suppresses central serotonergic function. These results also demonstrate a strain- specific effect of ATD Moja-De on anxiety-like behavior
STUDI PERILAKU SEKSUAL PADA KELOMPOK GAY :PENGETAHUAN, SIKAP DAN NILAI DI GUBUG SEBAYA KABUPATEN JOMBANG
<p><b>Objectives:</b> Recent research suggested an influence of diminished central nervous serotonin (5-HT) synthesis on the leptin axis via immunological mechanisms in healthy adult females. However, studies assessing immunological parameters in combination with dietary challenge techniques that impact brain 5-HT synthesis in humans are lacking. </p> <p><b>Methods:</b> In the present trial, a pilot analysis was conducted on data obtained in healthy adult humans receiving either different dietary acute tryptophan depletion (ATD) challenge or tryptophan (TRP)-balanced control conditions (BAL) to study the effects of reduced central nervous 5-HT synthesis on serum tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 concentrations. The data of <i>N</i> = 35 healthy adults were analysed who were randomly subjected to one of the following two dietary conditions in a double-blind between-subject approach: (1) The Moja-De ATD challenge (ATD), or (2) TRP-balanced control condition for ATD Moja-De (BAL). Serum concentrations for the assessment of relevant parameters (TNF-α, IL-1β and IL-6) and relevant TRP-related characteristics after the respective challenge procedures were assessed at baseline (T0) and in hourly intervals after administration over a period of 6 h (T1–T6). </p> <p><b>Results:</b> The ATD condition did not result in significant changes to cytokine concentrations for the entire study sample, or in male and female subgroups. Depletion of CNS 5-HT via dietary TRP depletion appears to have no statistically significant short-term impact on cytokine concentrations in healthy adults. </p> <p><b>Conclusions:</b> Future research on immunological stressors in combination with challenge techniques will be of value in order to further disentangle the complex interplay between brain 5-HT synthesis and immunological pathways.</p
Role of 5-HT and KYN Autoantibodies after Social Isolation and LPS Treatment in Female C57BL/6J Mice
Cognitive and neural strategies during control of the anterior cingulate cortex by fMRI neurofeedback in patients with schizophrenia
Cognitive functioning is impaired in patients with schizophrenia, leading to significant disabilities in everyday functioning. Its improvement is an important treatment target. Neurofeedback (NF) seems a promising method to address the neural dysfunctions underlying those cognitive impairments. The anterior cingulate cortex (ACC), a central hub for cognitive processing, is one of the dysfunctional brain regions in schizophrenia. Here we conducted NF training based on real-time functional magnetic resonance imaging (fMRI) in patients with schizophrenia to enable them to control their ACC activity. Training was performed over three days in a group of 11 patients with schizophrenia and 11 healthy controls. Social feedback was provided in accordance with the evoked activity in the selected region of interest (ROI). Neural and cognitive strategies were examined off-line. Both groups learned to control the activity of their ACC but used different neural strategies: Patients activated the dorsal and healthy controls the rostral subdivision. Patients mainly used imagination of music to elicit activity and the control group imagination of sports. However, the difference in neural control did not result from the differences in cognitive strategies but from diagnosis alone. Based on social reinforcers, schizophrenia patients can learn to regulate localized brain activity. Cognitive strategies and neural network location differ, however, from healthy controls. These data emphasize that for therapeutic interventions in schizophrenia compensatory strategies may emerge. Specific cognitive skills or specific dysfunctional networks should be addressed to train impaired skills. Social neurofeedback based on fMRI may be one method to accomplish precise learning targets
- …